Moleküle in der Mikrofalle
Max-Planck-Forscher fangen Moleküle auf einem Mikrochip und vereinfachen damit viele Experimente drastisch
Fritz-Haber-Institut der MPG
Chemie geht nicht ohne Stoßen: Moleküle prallen zusammen, bleiben aneinander hängen, fliegen wieder auseinander oder zerfallen sogar. Daher lernen Forscher auch viel über die Vorgänge in chemischen Reaktoren oder in der Atmosphäre, wenn sie in der Gasphase Stöße von Molekülen und die Lebensdauer von Zuständen studieren. "Solche Untersuchungen werden jetzt deutlich einfacher", sagt Gerard Meijer, in dessen Abteilung am Fritz-Haber-Institut der Max-Planck-Gesellschaft Forscher jetzt Moleküle auf einem Chip eingefangen haben.
Nach den Plänen der Forscher hat die Berliner Firma micro resist technology mehr als 1.200 Goldelektroden mit weniger als einer halben Haaresbreite Abstand auf einer Glasplatte platziert. Die Elektroden sind jeweils vier Millimeter lang und nur ein Zehntel so dick wie ein Haar. Den Chip positionieren die Forscher in einer Vakuum-Apparatur und legen an die Elektroden sechs verschiedene Wechselspannungen an. So erzeugen sie im Abstand von einem Zehntel Millimeter zylindrische Potenzialminima, die parallel zu den Elektroden laufen und wie Käscher Moleküle fangen. Die Moleküle müssen allerdings ein elektrisches Dipolmoment besitzen, also wie Kohlenmonoxid oder Wasser aus unterschiedlichen chemischen Elementen bestehen.
"Über die Frequenzen der Wechselspannung an den Elektroden steuern wir, wie schnell sich die Potenzialminima über den Chip bewegen", erklärt Sam Meek. Zu Beginn rasen die Fallen mit 325 Metern pro Sekunde, also Überschallgeschwindigkeit, über den Chip. Denn mit dieser Geschwindigkeit treffen die schnellsten Kohlenmonoxidmoleküle auf den Chip, die die Forscher in einem Molekularstrahl in die Mikrofalle treiben. Rund zehn Moleküle landen dann in einer Potenzialfalle, die mit dem Strahl über den Chip saust.
Nun regeln die Wissenschaftler die Frequenz der Wechselspannungen runter und bremsen so die Fallen samt gefangenen Molekülen ab. Dabei nehmen die Fallen aus dem Molekularstrahl nach und nach langsamere Moleküle auf. In dem Strahl fliegen die Moleküle nämlich im Schnitt mit 300 Metern pro Sekunde, die langsamsten aber nur 275 Metern pro Sekunde. Haben die Forscher auf diese Weise mehrere Dutzend Fallen beladen, bringen sie die Moleküle ganz nach Wunsch zum Stillstand oder auf eine beliebige Geschwindigkeit.
"Dabei fokussieren wir die Geschwindigkeit der Moleküle", sagt Sam Meek: Am Ende des Bremsweges variiert ihre Geschwindigkeit nur noch um wenige Meter pro Sekunde. Nun beschleunigen die Forscher die Moleküle wieder und schleudern sie vom Chip auf einen Detektor. "Dabei wählen wir die Geometrie und die Beschleunigung so, dass sich ihre Geschwindigkeit beim Verlassen des Chips wieder auffächert", erklärt Meek: "Auf diese Weise fokussieren wir die Moleküle räumlich, so dass sie alle gleichzeitig auf den Detektor treffen."
Atome lassen sich bereits seit einigen Jahren in magnetischen Fallen auf Chips gefangen. Allerdings können Physiker Atome sehr gut mit Laserstrahlen bremsen, bevor sie die Teilchen auf einem Chip manövrieren. Dabei erfährt das Atom jedes Mal, wenn es ein Laserphoton aufnimmt, einen kleinen Stoß. Geschickt eingesetzt lässt es sich mit diesen kleinen Schubsern stoppen. Das funktioniert aber nur, weil ein Atom auf alle Laser-Photonen in gleicher Weise reagiert. Moleküle tun das nicht - wenn sie ein Photon absorbieren, machen sie alles Mögliche, gebremst werden sie jedenfalls nicht. Daher müssen die Berliner Forscher sie auf dem Chip zur Ruhe bringen.
"Da wir jetzt auch Moleküle auf Chips fangen können, ermöglichen wir viele neue physikalische Experimente", sagt Gerard Meijer. So wird es künftig viel leichter die Lebensdauer von Zuständen zu bestimmen. Der Zustand eines Moleküls hängt von der Energie seiner Elektronen ab, aber auch davon, wie stark es schwingt oder rotiert. Da die Mikrofalle nur bei bestimmten Zuständen der Moleküle verfängt, brauchen die Forscher nun nur zu messen, wie lange sie das fragliche Molekül auf dem Chip fangen und anschließend noch nachweisen können.
Die Forscher möchten in der Mikrofalle auch Stöße verschiedener Moleküle untersuchen. Zu diesem Zweck müssten sie Gemische von Molekülen in die Falle jagen. "Wir hoffen, dass wir dabei Quanteneffekte beobachten können, die bislang experimentell kaum nachweisbar waren." Auf diese Weise ließen sich auch Fortschritte auf dem Weg zu einem Quantencomputer erzielen. Auf einem Chip gespeicherte polare Moleküle könnten nämlich als Quantenbits dienen und Rechnungen ausführen, indem sie miteinander wechselwirken. "Davon sind wir natürlich noch weit entfernt", sagt Gerard Meijer: "Wir sind aber zuversichtlich, dass wir mit der Molekülfalle ein ganz neues Forschungsfeld eröffnen."
Originalveröffentlichung: Samuel A. Meek, Horst Conrad, Gerard Meijer; "Trapping Molecules on a Chip"; Science, 26. Juni 2009