Tübinger Nahfeldmikroskop liefert höchstaufgelöste optische Bilder eines organischen Halbleiters
Millionenfache Verstärkung des Leuchtens an molekularen Stufen erreicht
AG Meixner, Universität Tübingen
Halbleiter aus organischen Dünnfilmen spielen eine wichtige Rolle in neuartigen elektronischen Anwendungen, zum Beispiel in organische Solarzellen zur Energiegewinnung aus Sonnenlicht oder in organischen Leuchtdioden (OLEDs) für biegsame hochauflösende Bildschirme. Ihre elektronischen und optischen Eigenschaften unterscheiden sich wesentlich von den Eigenschaften der organischen Moleküle, aus denen sie aufgebaut sind. Insbesondere die mikroskopische Struktur ist noch nicht gut verstanden, obwohl zum Beispiel molekulare Inseln, Kanten und Fehlstellen die Filmeigenschaften stark beeinflussen.
Genau dies macht das Tübinger Mikroskop sichtbar. Dazu wird eine äußerst feine Goldspitze bis auf ein bis drei Nanometer an die Halbleiteroberfläche herangebracht und gleichzeitig mit einem scharf fokussierten Laserstrahl beleuchtet. "Wir haben bei nanometergenauer Auflösung eine optische Signalverstärkung von bis zu einer Million erhalten", erklärt Alfred Meixner. "So eine hohe Verstärkung ist möglich, weil die Spitze im Fokus eines Parabolspiegels steht: Diese Kombination ergibt eine perfekte optische Antenne. Die Goldspitze konzentriert das Licht lokal in den nur Nanometer großen Spalt direkt zwischen Spitzenende und Probenoberfläche und erzeugt dort ein optisches Nahfeld, welches die Probe anregt. Photonen, die dort von der Probe erzeugt werden, gelangen auf dem umgekehrten Weg über die Spitze und den Parabolspiegel auf einen empfindlichen Detektor."
Die Nahfeldmessungen der Halbleiterfilme aus Diindenoperylen-Molekülen (DIP) ergaben, dass die Kanten der DIP-Nano-Terrassen leuchten: die Kanten sind nur eine bis drei Molekülschichten hoch und erscheinen als helle Streifen von etwa 17 Nanometer Breite. Dies liegt an Elektronenlochpaaren, sogenannten Exzitonen, die in dem Halbleiter DIP durch das Nahfeld der Spitze erzeugt und auch detektiert werden. "Wäre unsere Goldspitze nicht da, würden die Exzitonen hauptsächlich thermisch zerfallen", erklärt Alfred Meixner. "Dieser Durchbruch könnte dazu führen, dass die Nahfeldmikroskopie Eingang in die Materialforschung findet und dort zu grundlegenden neuen Erkenntnissen führt", sind sich Reinhard Scholz und Frank Schreiber einig.
Originalveröffentlichung: Physical Review Letters, 5. Februar 2010
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.