Hirntumor-Aufnahmen besser auswerten mit Künstlicher Intelligenz

22.10.2018 - Deutschland

Um Hirntumore zu erkennen und von anderen Gewebsveränderungen zu unterscheiden, setzen Ärzte die Magnetresonanztomografie (MRT) und eine spezielle Art der Positronen-Emissions-Tomografie (PET) ein. Jülicher, Kölner und Aachener Forscher haben nun in zwei Studien gezeigt, dass sich mittels Künstlicher Intelligenz wertvolle Zusatzinformationen aus den Aufnahmen gewinnen lassen, die dem Auge des Arztes verborgen bleiben.

Erkennen molekulargenetischer Unterschiede

MRT- und PET-Aufnahmen enthalten Informationen, mit deren Hilfe ein Computerprogramm lernen kann, molekulargenetisch verschiedene Hirntumore voneinander zu unterscheiden. Das berichtet ein Forscherteam um Dr. Philipp Lohmann und Prof. Norbert Galldiks aus dem Jülicher Institut für Neurowissenschaften und Medizin (INM-3 und INM-4) sowie der Kölner Universitätsklinik für Neurologie in einer Publikation des Online-Journals "Scientific Reports" der Nature-Gruppe.

Die genetische Ausstattung eines Hirntumors kann die Überlebenszeit der Betroffenen erheblich beeinflussen. Ein Beispiel liefert ein Gen, das für die Aktivität des Enzyms IDH (Isocitrat-Dehydrogenase) verantwortlich ist. Ist es etwa bei Gliomen – eine bestimmte Art von Hirntumor – mutiert, so haben die Betroffenen eine deutlich bessere Prognose als bei unverändertem IDH-Gen.

Um die molekulargenetischen Eigenschaften eines Tumors zu charakterisieren, müssen Ärzte dem Patienten eine Gewebeprobe entnehmen, also eine Biopsie oder Operation durchführen. Von der genetischen Ausstattung eines Tumors kann dann auch abhängen, welche Behandlungsschritte – vor allem Strahlen- und Chemotherapie – ergänzt werden müssen.

Die Wissenschaftler haben computergestützt spezielle Merkmale von Bildern bestimmt, die mittels PET unter Verwendung der in Jülich entwickelten radioaktiv markierten Aminosäure O-(2-[18F]fluoroethyl)-L-tyrosin (FET) entstanden waren. Insbesondere haben sie dabei sogenannte Texturmerkmale berechnet. Diese Merkmale beschreiben, wie unregelmäßig die FET-Anreicherung im Tumor ist. "Die Grundidee stammt aus der automatischen Auswertung von Satellitenbildern. Computerprogramme erkennen dort anhand von Strukturmerkmalen zum Beispiel, wo sich ein See oder eine Stadt befindet", erläutert Philipp Lohmann.

Im nächsten Schritt trainierten die Wissenschaftler eine lernende Software darin, aus den Texturmerkmalen und anderen FET PET-Parametern zu schließen, ob der Tumor eine IDH-Mutation aufweist oder nicht. Sie gaben dabei der Software stets Rückmeldung, inwieweit das Ergebnis mit den Biopsie-Ergebnissen übereinstimmte. Die lernende Software passte daraufhin ihr mathematisches Modell an. Am Ende unterschied sie auf Basis der Bilder mit einer Genauigkeit von rund 93 Prozent zwischen Tumoren mit und ohne IDH-Mutation.

Unterscheiden zwischen Rückfall und Vernarbung

Dieselbe Forschergruppe veröffentlichte in Zusammenarbeit mit Prof. Martin Kocher vom INM-4 und der Kölner Universitätsklinik für Stereotaxie kürzlich eine weitere Arbeit. Die Hirnforscher zeigen im Fachjournal "NeuroImage: Clinical", dass sich eine Software darauf trainieren lässt, aufgrund von MRT- und FET PET-Bildern zwischen einer "Narbe" nach der Bestrahlung eines Hirntumors (Strahlennekrose) und einem erneuten Tumorwachstum zu unterscheiden. Auf konventionellem Weg mittels MRT ist diese Differenzierung kaum möglich. Sie ist aber wichtig, damit die Ärzte nicht Strahlennekrosen wie einen erneuten Tumor behandeln und damit den Patienten unnötig belasten.

Die entscheidenden Bildinformationen liefern wiederum die Texturmerkmale, die ein Arzt ohne Hilfe des Computers nicht erkennen kann. Die Jülicher Forscher fanden heraus: Die "Treffsicherheit" der Künstlichen Intelligenz bei der Diagnostik verbessert sich auf über 90 Prozent, wenn sie mit MRT- und FET PET-Texturmerkmalen "gefüttert" wird. Muss sie mit den Texturmerkmalen von einer der beiden Tomografie-Methoden auskommen, liegt die diagnostische Genauigkeit immer noch bei rund 80 Prozent.

Beide Publikationen weisen darauf hin, dass Methoden der Künstlichen Intelligenz in Zukunft auch in der Hirntumordiagnostik eine wichtige Rolle spielen könnten. Die Ergebnisse dieser Pilotstudien müssen jedoch in weiteren Studien bestätigt werden, bevor sie möglicherweise im klinischen Alltag anwendbar werden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Limsophy LIMS

Limsophy LIMS von AAC Infotray

Optimieren Sie Ihre Laborprozesse mit Limsophy LIMS

Nahtlose Integration und Prozessoptimierung in der Labordatenverwaltung

LIMS
OMNIS

OMNIS von Metrohm

OMNIS – die Plattform zur Integration der Metrohm Titrando Gerätegeneration

OMNIS ermöglicht die Kombination von Bestandskomponenten mit neuester OMNIS Hard- und Software

Laborsoftware
LAUDA.LIVE

LAUDA.LIVE von LAUDA

LAUDA.LIVE - Die digitale Plattform für Ihre Geräteverwaltung

Viefältige Flottenmanagementoptionen für jedes LAUDA Gerät - mit und ohne IoT-Anbindung

Laborsoftware
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Diagnostik

Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.

Themenwelt anzeigen
Themenwelt Diagnostik

Themenwelt Diagnostik

Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.