Eine Fernsteuerung für alles Kleine

Optische Pinzetten in schmutziger Umgebung

20.11.2019 - Österreich

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

© TU Wien

Maßgeschneiderte Welle Intensitätsverteilung eines elektrischen Wellenfeldes, das ein wohldefiniertes Drehmoment auf das quadratische Target ausübt.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel zu manipulieren. Sogar Viren oder Zellen können damit festgehalten oder gezielt bewegt werden. Allerdings funktionieren diese Lichtpinzetten nur, wenn sich das festgehaltene Objekt im leeren Raum befindet. Jede störende Umgebung würde die Lichtwellen ablenken und den Effekt kaputtmachen. Gerade bei biologischen Proben ist das ein Problem, denn sie sind meistens in eine räumlich sehr komplexe Umgebung eingebettet.

An der TU Wien wurde nun gezeigt, wie man aus dieser Not eine Tugend machen kann: Eine spezielle Rechenmethode wurde entwickelt, um die optimale Lichtwellenform zu ermitteln, mit der man die kleinen Teilchen in Anwesenheit einer störenden Umgebung manipulieren kann. So wird es möglich, einzelne biologische Teilchen im Inneren einer Probe festzuhalten, sie zu bewegen oder zu drehen – auch wenn man sie nicht direkt berühren kann. Der maßgeschneiderte Lichtstrahl wird zur Universal-Fernbedienung für alles Kleine. Mit Mikrowellen-Experimenten wurde bereits demonstriert, dass die Methode funktioniert.

Optische Pinzetten in schmutziger Umgebung

„Laserstrahlen zur Manipulation von Materie einzusetzen ist längst nichts Ungewöhnliches mehr“, erklärt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien. 1997 wurde der Physik-Nobelpreis für Laserstrahlen vergeben, mit denen sich Atome abbremsen und damit abkühlen ließen, 2018 gab es einen Physik-Nobelpreis für die Entwicklung von optischen Pinzetten.

Doch Lichtwellen sind empfindlich: In einer ungeordneten, unregelmäßigen Umgebung können sie auf hochkomplizierte Weise abgelenkt und in alle Richtungen gestreut werden. Aus einer völlig regelmäßigen Lichtwelle wird dann ein wirres, ungeordnetes Wellenmuster. Die Wirkung auf ein bestimmtes Partikel, das man manipulieren möchte, kann sich dadurch völlig verändern.

„Diesen Streu-Effekt kann man jedoch kompensieren“, erklärt Michael Horodynski, Erstautor der Studie. „Im Speziellen berechnen wir, wie man die Welle anfangs formen muss, damit sie von den Unregelmäßigkeiten einer ungeordneten Umgebung genau in die Form gebracht wird, die wir wollen.“ Die Lichtwelle sieht in diesem Fall zunächst also recht ungeordnet und chaotisch aus, wird durch die ungeordnete Umgebung aber zu etwas Geordnetem. Die vielen kleinen Störungen, die normalerweise das Experiment unmöglich machen, nützt man hier aus, um genau die gewünschte Wellenform zu erzeugen, die dann an einem bestimmten Partikel ihre Wirkung entfaltet.

Die optimale Welle berechnen

Damit das gelingt, wird das Partikel samt seiner ungeordneten Umgebung zunächst mit verschiedenen Wellen beleuchtet. Dabei misst man, auf welche Weise die Wellen reflektiert werden. Diese Messung führt man zweimal kurz hintereinander durch. „Angenommen, in der kurzen Zeit zwischen den beiden Messungen bleibt die ungeordnete Umgebung ziemlich gleich, während sich das Partikel, das wir manipulieren wollen, ein kleines bisschen verändert“, sagt Stefan Rotter. „Denken wir etwa an eine Zelle die sich bewegt, oder einfach nur ein winziges Stück nach unten sinkt. Dann wird die Lichtwelle, die wir hineinschicken bei der zweiten Messung ein kleines bisschen anders reflektiert als beim ersten Mal.“ Und genau dieser winzige Unterschied ist entscheidend: Mit der neuen Rechenmethode des Forschungsteams an der TU Wien kann man daraus berechnen, welche Welle man verwenden muss, um diese Partikelbewegung zu verstärken oder abzuschwächen.

„Wenn das Partikel langsam nach unten sinkt, können wir eine Welle berechnen, die dieses Absinken verhindert, oder das Partikel noch schneller absinken lässt“, sagt Stefan Rotter. „Wenn sich das Partikel ein kleines bisschen dreht, dann können wir eine Welle berechnen, die den maximalen Drehimpuls überträgt – wir bringen somit das Partikel dann mit einer speziell geformten Lichtwelle zum Rotieren, ohne es direkt zu berühren.“

Erfolgreiche Experimente mit Mikrowellen

Kevin Pichler, ebenfalls Teil des Forschungsteams an der TU Wien, konnte bei Projektpartnern an der Universität Nizza (Frankreich) die Rechenmethode in der Praxis umsetzen: Er verwendete zufällig angeordnete Teflon-Objekte, die er mit Mikrowellen bestrahlte – und tatsächlich gelang es auf diese Weise, genau jene Wellenformen zu erzeugen, die durch die Unordnung des Systems am Ende genau die gewünschte Wirkung zeigten.

„Das Mikrowellenexperiment zeigt, dass unsere Methode funktioniert“, berichtet Stefan Rotter. „Aber das eigentliche Ziel ist, sie nicht mit Mikrowellen sondern mit sichtbarem Licht einzusetzen. Das könnte für optische Pinzetten völlig neue Anwendungsgebiete erschließen und speziell in der biologischen Forschung erlauben, kleine Partikel auf eine Weise zu kontrollieren, die bisher völlig unmöglich war.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Unter die Lupe genommen: Die Welt der Mikroskopie