Wissenschaftler:innen entdecken neue Regulatoren des Alternsprozesses

Die Anheftung des kleinen Proteins Ubiquitin an andere Proteine (Ubiquitinierung) reguliert zahlreiche biologische Prozesse, darunter Signalweiterleitung und Stoffwechsel

02.08.2021 - Deutschland

Wissenschaftler:innen haben entdeckt, dass das Protein Ubiquitin für die Regulierung des Alterungsprozesses eine wichtige Rolle einnimmt. Bisher war bekannt, dass Ubiquitin zahlreiche Prozesse, wie zum Beispiel Signalweiterleitung und Stoffwechsel, steuert. Prof. Dr. David Vilchez und seine Mitarbeiter:innen und Kolleg:innen am CECAD Exzellenzcluster für Alternsforschung der Universität zu Köln führten eine umfassende quantitative Analyse der Ubiquitin-Signaturen während des Alterns im Modellorganismus Caenorhabditis elegans, einem Fadenwurm durch. Diese Methode – die sogenannte Ubiquitin-Proteomik - misst alle Veränderungen der Ubiquitinierung von Proteinen in der Zelle. Die resultierenden Daten liefern ortsspezifische Informationen und definieren quantitative Veränderungen der Ubiquitin-Veränderungen über alle Proteine einer Zelle während der Alterung. Ein Vergleich mit dem Gesamtproteingehalt einer Zelle (Proteom) zeigte, welche Veränderungen funktionelle Konsequenzen im Proteinumsatz und im tatsächlichen Proteingehalt während des Alterungsprozesses haben. Die Wissenschaftler:innen entdeckten so neue Regulatoren der Lebensspanne und liefern einen umfassenden Datensatz, der hilft, Altern und Langlebigkeit zu verstehen. Der Artikel 'Rewiring of the ubiquitinated proteome determines ageing in C. elegans' wurde jetzt in Nature veröffentlicht.

Photo by Nina Hill on Unsplash

„Unsere Untersuchung der Ubiquitin-Veränderungen führte uns zu einer Reihe von spannenden Schlussfolgerungen mit wichtigen Erkenntnissen für das Verständnis des Alterungsprozesses", sagt Dr. Seda Koyuncu, Hauptautorin der Studie. „Wir entdeckten, dass das Altern zu deutlichen Veränderungen der Ubiquitinierung an tausenden von Proteinen in der Zelle führt, was hingegen durch Langlebigkeitsmaßnahmen wie verringerte Nahrungsaufnahme und weniger Insulin-Signalisierung verhindert wurde.“ Konkret fanden die Forscher:innen heraus, dass das Altern einen allgemeinen Verlust der Ubiquitinierung verursacht. Dies wird dadurch verursacht, dass die Enzyme, die Ubiquitin von Proteinen entfernen, mit steigendem Alter aktiver werden. Im Normalfall werden ubiquitinierte Proteine vom Proteasom, dem Müllwagen der Zelle, erkannt und vernichtet. Die Wissenschaftler:innen zeigten, dass die Langlebigkeit von Organismen durch altersbedingte Veränderungen im Abbau von Struktur- und Regulationsproteinen durch das Proteasom bestimmt wird. „Wir untersuchten Tiere mit einem defekten Proteasom, um Proteine zu identifizieren, die mit dem Alter weniger markiert werden und somit nicht vom Proteasom aufgeräumt werden und sich in der Zelle anreichern. Eine Anhäufung von Proteinen führt nämlich zum Zelltod,“ sagt Koyuncu. „Bemerkenswerterweise sahen wir, dass die Verringerung des Proteinspiegels dieser nicht markierten Proteine ausreichte, um die Langlebigkeit zu verlängern, während die Verhinderung ihres Abbaus durch das Proteasom die Lebensspanne verkürzte.“

Neben der Bereitstellung eines umfassenden Datensatzes zeigten die Forscher:innen, dass die Definition von Veränderungen im Ubiquitin-modifizierten Proteom zur Entdeckung neuer Regulatoren der Lebensspanne und Alterungsmerkmale führen kann. Sie konzentrierten ihre Folgeanalysen auf zwei spezifische Proteine, denen während des Alterungsprozesses die Ubiquitin Markierung fehlte. IFB-2, ein Protein, das für die Zellstruktur wichtig ist, und EPS-8, ein Modulator eines Signalwegs, der eine Vielzahl von zellulären Prozessen reguliert. Diese Proteine, die in gealterten Organismen nicht mehr ausreichend markiert sind, haben in verschiedenen Geweben einen Einfluss auf die Langlebigkeit. Erhöhte Proteinmengen von IFB-2 führen zum Beispiel dazu, dass der Darm nicht richtig verdaut oder Nährstoffe nicht aufgenommen werden können und zudem anfälliger für bakterielle Infektionen wird. Dies ist oft bei alternden Tieren der Fall. „Bemerkenswerterweise reichte das Ausschalten von IFB-2 im erwachsenen C.elegans aus, um wieder eine normale Darmfunktion zu erreichen“, sagt Koyuncu. Zu viele Mengen an EPS-8 in den Zellen überaktiviert einen bestimmten Signalweg (RAC) in Muskel- und Gehirnzellen. Das Team entdeckte hier, dass der RAC-Signalweg die Langlebigkeit, Muskelfunktion und Beweglichkeit bestimmt.

„Unsere Erkenntnisse können neue Wege aufzeigen, um den Alterungsprozess zu verzögern und die Lebensqualität im Alter zu verbessern. Insbesondere haben wir eine neuartige Verbindung zwischen dem Altern und allgemeinen Veränderungen im Ubiquitin-modifizierten Proteom hergestellt, ein Prozess, der die Langlebigkeit aktiv beeinflusst“, sagt Studienkoordinator David Vilchez, Forschungsgruppenleiter am CECAD und am Zentrum für Molekulare Medizin Köln (CMMC). „Unsere Ergebnisse und reichhaltigen Datensätze können wichtige Auswirkungen auf verschiedene Forschungsschwerpunkte haben, darunter Alterung, Ubiquitinierung und weitere Zellprozesse."

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Kjel- / Dist Line

Kjel- / Dist Line von Büchi

Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen

Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen

Destillationsgeräte
AZURA Purifier + LH 2.1

AZURA Purifier + LH 2.1 von KNAUER

Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz

Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen

LC-Systeme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen