Gedrucktes Spektrometer

Ein elektronischer Regenbogen: Perowskit-Spektrometer mit Tintenstrahldrucker

04.01.2022 - Deutschland

Mit einem Tintenstrahldruckverfahren haben Teams aus dem Innovation Lab HySPRINT am Helmholtz-Zentrum Berlin (HZB) und der Humboldt-Universität zu Berlin (HU) Photodetektoren auf Basis von hybriden Perowskit-Halbleitern produziert. Durch gezieltes Abmischen von nur drei „Tinten“ konnten sie die Eigenschaften des Halbleiters während des Druckvorgangs präzise einstellen. Der Tintenstrahldruck ist in der Industrie eine etablierte Herstellungsmethode, die eine schnelle und kostengünstige Verarbeitung von Lösungen ermöglicht. Die Ausweitung von der großflächigen Beschichtung auf die kombinatorische Materialsynthese eröffnet neue Möglichkeiten für die Herstellung verschiedener elektronischer Komponenten in einem einzigen Druckschritt.

Metallhalogenid-Perowskite sind eine faszinierende Materialklasse mit einem breiten Spektrum von möglichen Anwendungen in der Optoelektronik und Photovoltaik. Die Herstellung elektronischer Bauteile mit diesem Material ist besonders attraktiv, weil sie aus einer Lösung, d. h. aus einer Tinte, möglich ist. Kommerziell erhältliche Salze werden in einem Lösungsmittel gelöst und dann auf ein Substrat aufgebracht. Die Gruppe um Prof. Emil List-Kratochvil, Leiter einer gemeinsamen Forschungsgruppe am HZB und der HU, konzentriert sich darauf, solche Bauelemente mit Hilfe von Herstellungsverfahren wie dem Tintenstrahldruck herzustellen. Der Drucker trägt die Tinte auf ein Substrat auf und nach dem Trocknen bildet sich ein dünner Halbleiterfilm. Durch die Kombination mehrerer Schritte mit verschiedenen Materialien lassen sich Solarzellen, LEDs oder Photodetektoren in wenigen Minuten herstellen.

Kombinatorischer Ansatz

Der Tintenstrahldruck ist in der Industrie bereits eine etablierte Technik, nicht nur für Zeitungen und Zeitschriften, sondern auch für Funktionsmaterialien. Metallhalogenid-Perowskite sind für den Tintenstrahldruck besonders interessant, da ihre Eigenschaften durch ihre chemische Zusammensetzung eingestellt werden können. Forschungsgruppen am HZB haben bereits Solarzellen und LEDs aus Perowskiten im Tintenstrahldruck hergestellt. Diese Fähigkeiten wurden 2020 weiter ausgebaut, als die Gruppe von Dr. Eva Unger erstmals einen kombinatorischen Ansatz für den Tintenstrahl-Druck nutzte, um verschiedene Perowskit-Zusammensetzungen auf der Suche nach einem besseren Solarzellenmaterial zu drucken.

Gedrucktes Spektrometer

In der aktuellen Arbeit hat das Team um Prof. Emil List-Kratochvil nun eine spannende Anwendung für eine große Perowskit-Serie in wellenlängenselektiven Photodetektoren gefunden. "Der kombinatorische Tintenstrahldruck kann nicht nur zum Screening verschiedener Materialzusammensetzungen für Solarzellenmaterialien verwendet werden", erklärt er, "sondern ermöglicht uns auch die Herstellung mehrerer, separater Bauelemente in einem einzigen Druckschritt." Im Hinblick auf ein industrielles Verfahren würde dies die Produktion der unterschiedlichsten elektronischen Bauelemente ermöglichen. In Kombination mit gedruckten elektronischen Schaltkreisen würden Photodetektoren ein einfaches Spektrometer bilden: papierdünn, auf eine beliebige Oberfläche gedruckt, potenziell flexibel, ohne die Notwendigkeit eines Prismas oder Gitters zur Trennung der eingehenden Wellenlängen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

PlasmaQuant MS Elite

PlasmaQuant MS Elite von Analytik Jena

Massenspektrometer für hochempfindliche Forschungsanwendungen und niedrigste Nachweisgrenzen

Die Erfolgsformel in der LC-ICP-MS – PlasmaQuant MS-Serie und PQ LC

PlasmaQuant 9100

PlasmaQuant 9100 von Analytik Jena

Neues ICP-OES PlasmaQuant 9100 für komplexe Probenmatrices

Mehr sehen. Mehr wissen. ICP-OES vereinfacht Analyse matrixlastiger Proben

ICP-OES-Spektrometer
ZEEnit

ZEEnit von Analytik Jena

Zeeman-Technik mit maximaler Empfindlichkeit und Applikationsvielfalt

Quergeheizte Graphitrohrofen für optimale Atomisierungsbedingungen und hohen Probendurchsatz

AAS-Spektrometer
INVENIO

INVENIO von Bruker

FT-IR Spektrometer der Zukunft: INVENIO

Völlig frei aufrüstbares und konfigurierbares FT-IR Spektrometer

FT-IR-Spektrometer
novAA®  800

novAA® 800 von Analytik Jena

Der Analysator für Sie - novAA 800-Serie

Das zuverlässige Multitalent für die effiziente und kostengünstige Routineanalyse

SPECORD PLUS

SPECORD PLUS von Analytik Jena

Die neue Generation der Zweistrahlphotometer von Analytik Jena

Der moderne Klassiker garantiert höchste Qualität

contrAA 800

contrAA 800 von Analytik Jena

contrAA 800 Serie – Atomic Absorption. Redefined

Kombiniert das Beste der klassischen Atomabsorption mit den Vorteilen von ICP-OES-Spektrometern

ICP-OES-Spektrometer
Mikrospektrometer

Mikrospektrometer von Hamamatsu Photonics

Ultrakompaktes Mikrospektrometer für vielseitige Anwendungen

Präzise Raman-, UV/VIS- und NIR-Messungen in tragbaren Geräten

Mikrospektrometer
Quantaurus-QY

Quantaurus-QY von Hamamatsu Photonics

Hochgeschwindigkeits-UV/NIR-Photolumineszenz-Spektrometer

Präzise Quantenausbeute-Messungen in Millisekunden ohne Referenzstandards

Fluoreszenzspektrometer
FastTrack™

FastTrack™ von Mettler-Toledo

FastTrack UV/VIS-Spektroskopie - beschleunigen Sie Ihre Messungen

Schnelle, zuverlässige & effiziente Messungen mit rückführbarer Genauigkeit bei geringem Platzbedarf

UV/VIS-Spektralphotometer
fluidlab R-300 | Cell Counter & Spectrometer

fluidlab R-300 | Cell Counter & Spectrometer von anvajo

fluidlab R-300 | Zellzähler & Spektrometer

Das erste portable Laborgerät, das Zellzählung und Spektrometrie kombiniert

Zellanalysatoren
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen