Gefangen im Vakuum: Mit Penningfallen auf der Suche nach der Insel der Stabilität
Jens Ketelaer und Kollegen bauen eine Präzisionswaage zur Massenmessung künstlich erzeugter Isotope auf
Institut für Kernchemie, Universität Mainz
Das Poster vor dem Eingang zum Mainzer Kernreaktor zeigt einen Vergleich: Ein großer Airbus A380 mit einer kleinen grünen Erbse an Bord. So genau arbeitet Ketelaers Penningfalle, dass sie feststellen würde, ob der 600 Tonnen schwere „Superjumbo“ eine Erbse mehr oder weniger geladen hat. Mit einer ähnlichen Waage ist es einer internationalen Kollaboration von Wissenschaftlern am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt unter Beteiligung der Mainzer Forschungsgruppe kürzlich zum ersten Mal gelungen, die Masse des künstlichen Elements Nobelium mit nie dagewesener Genauigkeit zu messen. Diese hochpräzise, direkte Massenmessung gilt als Pionierarbeit auf diesem Forschungsgebiet. „Wir bauen hier in Mainz ein viel sensitiveres Nachweissystem auf, das später auch an der GSI zum Einsatz kommen wird“, erklärt Ketelaer. „Mit ihm werden wir in Zukunft noch schwerere Elemente mit der Penningfalle wiegen können und vielleicht auch zur Insel der Stabilität vorstoßen.“ Zu den prominenten Forschungseinrichtungen, die mit Penningfallen arbeiten, gehört Isoltrap am CERN, sozusagen die „Mutter aller Anlagen“ für hochpräzise Massenmessungen mit einer Penningfalle.
Die Penningfalle ist eine Art geschlossener Zylinder aus hochreinem Kupfer vom Durchmesser eines 50-Cent-Stücks. Im Innern herrscht ein Ultrahochvakuum. Ein elektrisches und ein magnetisches Feld halten die geladenen Teilchen in der Schwebe und zwingen sie in etwa im Zentrum des Zylinders auf eine kleine Kreisbahn. Die Ionen sind damit gefangen und können im Ruhezustand wesentlich besser untersucht werden als in Bewegung. „Wir messen nun die Frequenz dieses geladenen Teilchens, also wie viele Kreisbewegungen es pro Sekunde macht“, erklärt Ketelaer. Daraus lässt sich die Masse des Teilchens berechnen und zwar mit unvergleichlicher Genauigkeit. Die Einrichtung des Versuchs in der großen Halle des Mainzer Forschungsreaktors Triga hat etwa zwei Jahre gedauert. Die ersten Tests erfolgten Ende 2009 mit dem Element Gadolinium, das zu den Metallen der Seltenen Erden gehört. Die Ergebnisse führten zu deutlich verbesserten Massenwerten, sodass präzisere Aussagen über die Struktur der Atomkerne gemacht werden können.
Wichtig sind derartige Massenmessungen nicht nur für die Kernphysiker, um den Aufbau und die Struktur von Atomkernen besser zu verstehen, sondern auch für die Astrophysiker, die sich für die Entstehung der Elemente in der Natur interessieren und erforschen, wie die ersten Elemente nach dem Urknall entstanden sind. „Wenn wir mehr über den Aufbau und das Verhalten von Atomkernen wissen, können wir vielleicht auch erklären, warum bestimmte Elemente auf der Erde vorkommen und wie sie gebildet wurden“, erläutert Ketelaer. Er ist Mitglied der Arbeitsgruppe „Präzisionsexperimente mit gespeicherten und gekühlten Ionen“ von Prof. Dr. Klaus Blaum, Direktor des Max-Planck-Instituts für Kernphysik in Heidelberg. Vor seiner Doktorarbeit hat Jens Ketelaer bereits seine Diplomarbeit an der Uni Mainz auf dem Gebiet der Penningfallen-Massenspektrometrie erstellt und dafür sowohl den VDI-Förderpreis als auch den Wolfgang-Paul-Studienpreis erhalten. Er war zwei Jahre Juniormitglied der Gutenberg-Akademie, einer Einrichtung der Johannes Gutenberg-Universität zur Unterstützung besonders herausragender Nachwuchswissenschaftler.
Originalveröffentlichungen: M. Block et.al.; "First direct mass measurements above uranium bridge the gap to the island of stability"; Nature, 2010, 463, 785-788
J.Ketelaer et al.; "TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz"; Nucl. Instrum. Meth. A, 2008, 594, 162-177
J.Ketelaer et al.; "Recent developments in ion detection techniques for Penning trap mass spectrometry at TRIGA-TRAP"; Eur. Phys. J. A, 2009, 42, 311-317
J. Ketelaer et al.'; "Accuracy studies with carbon clusters at the Penning trap mass spectrometer TRIGA-TRAP"; Eur. Phys. J. D, 2010, in print
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!