Auffahrunfall auf der „Ribosomen-Autobahn“
Wissenschaftler identifizieren bakterielles Protein, das „stehengebliebene“ Ribosomen erkennt und rettet
Sebastian Filbeck (ZMBH)
Die Baupläne von Proteinen sind in der DNA im Zellkern gespeichert und werden dort in mRNA umgeschrieben. Mit den genetischen Informationen für ein bestimmtes Protein verlässt die mRNA den Zellkern und wird zu den Ribosomen transportiert, wo diese Informationen in Eiweiße umgesetzt werden. „Beim Ablesen dieser Baupläne können Ribosomen ins Stocken geraten, etwa wegen eines defekten mRNA-Moleküls. Das ist vor allem deshalb problematisch, weil unfertige Proteine potenziell giftig für die Zelle sind“, erklärt der Molekularbiologe Prof. Dr. Claudio Joazeiro, der mit seiner Arbeitsgruppe am ZMBH forscht. „Aus diesem Grund haben Zellen Mechanismen entwickelt, die stehengebliebene Ribosomen erkennen und die unfertigen Proteine für den Abbau markieren, solange sie sich noch an ihrem Geburtsort, dem Ribosom, befinden.“
Einen zentralen Schritt in diesem Prozess haben die Wissenschaftler anhand des weitverbreiteten Bodenbakteriums Bacillus subtilis mithilfe von hochauflösender Kryo-Elektronenmikroskopie entschlüsselt. Sie konnten genau charakterisieren, wie das Protein MutS2, das in etwa einem Drittel aller Bakterienarten vorkommt, seine Aufgabe als Sensor für stehengebliebene Ribosomen erfüllt: MutS2 erkennt die Kollision zwischen dem festsitzenden und nachfolgenden Ribosom auf der mRNA – ein Vorgang, der nach den Worten von Dr. Stefan Pfeffer, Nachwuchsgruppenleiter am ZMBH, große Ähnlichkeit mit einem Auffahrunfall hat, der durch ein liegengebliebenes Fahrzeug auf der Autobahn verursacht wird und dadurch die Aufmerksamkeit der Polizei erregt.
Um auf der mRNA verharrende Ribosomen zu retten, verfolgt MutS2 nach Angaben der Wissenschaftler zwei unabhängige Strategien. „Einerseits zerschneidet MutS2 das mRNA-Molekül, damit es abgebaut werden kann. Andererseits trennt MutS2 das Ribosom in seine zwei Untereinheiten auf. So kann es für die spätere Herstellung anderer Proteine recycelt werden. Gleichzeitig wird das unfertige Protein über die sogenannte Ribosomen-assoziierte Proteinqualitätskontrolle dem Abbau zugeführt“, erläutert Dr. Pfeffer. Wie Prof. Joazeiro hervorhebt, ist der Mechanismus dieser Qualitätskontrolle vom Bakterium bis zum Menschen konserviert. „Ein besseres Verständnis dieses fundamentalen Prozesses in Bakterien könnte deshalb auch Aufschluss über Krankheitsmechanismen in Säugetieren geben, bei denen Defekte beim Abbau unfertiger Proteine mit Neurodegeneration und neuromuskulären Erkrankungen in Zusammenhang stehen“, so der Wissenschaftler.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Kjel- / Dist Line von Büchi
Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen
Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen
AZURA Purifier + LH 2.1 von KNAUER
Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz
Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.