Die komplexesten Knoten in Proteinen

Theoretische Physiker stellen Googles künstliche Intelligenz AlphaFold auf die Probe und finden die bisher komplexesten Proteinknoten

20.07.2022 - Deutschland

Die Frage danach, wie die chemische Zusammensetzung eines Proteins dessen 3-D-Struktur bestimmt, ist schon seit über einem halben Jahrhundert eine der größten Herausforderungen der Biophysik. Dieses Wissen um die sogenannte „Faltung“ von Proteinen ist zu Recht heiß begehrt, denn es trägt unter anderem maßgeblich zum Verständnis diverser Krankheiten und deren Behandlung bei. Aus diesen Gründen hat Googles Forschungsteam DeepMind die künstliche Intelligenz AlphaFold entwickelt, welche 3-D-Strukturen vorhersagt.

© Maarten Brems

Der komplexeste Proteinknoten mit sieben Überkreuzungen (l.), vorhergesagt durch AlphaFold, und eine vereinfachte Darstellung (r.)

Ein Team bestehend aus Forschern der Johannes Gutenberg-Universität Mainz (JGU) und der University of California, Los Angeles, hat sich diese Strukturen nun etwas genauer angeschaut und auf Verknotungen untersucht. Knoten kennen wir vor allem von Schnürsenkeln und Kabeln – doch treten sie auch mikroskopisch klein in unseren Zellen auf. Verknotete Proteine können nicht nur zur Einschätzung der Güte der Vorhersagen herangezogen werden, sondern werfen darüber hinaus wichtige Fragen zu Faltungsmechanismen und der Evolution von Proteinen auf.

Die komplexesten Knoten als Test für AlphaFold

„Wir haben alle, nämlich einige 100.000 Vorhersagen von AlphaFold numerisch nach neuen Proteinknoten durchsucht“, sagt Maarten A. Brems, Doktorand in der Gruppe von Dr. Peter Virnau an der JGU. Ziel war es, seltene, qualitativ hochwertige Strukturen zu identifizieren, welche komplexe und bisher unbekannte Proteinknoten enthalten, um eine Basis für die experimentelle Verifizierung von AlphaFolds Vorhersagen zu schaffen. Bei der Untersuchung wurde nicht nur das bisher am komplexesten verknotete Protein gefunden, sondern auch die ersten Kompositknoten in Proteinen. Letztere kann man sich vorstellen wie zwei getrennte Knoten in der gleichen Schnur. „Diese neuen Entdeckungen geben außerdem Einsicht in die evolutionären Mechanismen hinter solchen seltenen Proteinen“, ergänzt der theoretische Physiker Robert Runkel, der ebenfalls am Projekt beteiligt war. Die Resultate wurden jetzt im Journal Protein Science veröffentlicht.

Über die Ergebnisse freut sich auch Peter Virnau: „Wir haben bereits eine Kollaboration mit unserem Kollegen Todd Yeates von der UCLA etabliert, um diese Strukturen experimentell zu bestätigen. Diese Forschungsrichtung wird den Blick der Biophysik-Community auf die künstliche Intelligenz prägen und wir sind glücklich, einen Experten wie Dr. Yeates dabei zu haben.“

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Kjel- / Dist Line

Kjel- / Dist Line von Büchi

Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen

Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen

Destillationsgeräte
AZURA Purifier + LH 2.1

AZURA Purifier + LH 2.1 von KNAUER

Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz

Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen

LC-Systeme
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Unter die Lupe genommen: Die Welt der Mikroskopie