Röntgentomoskopie: Wie sich beim Gefrierguss komplexe Strukturen bilden, lässt sich nun in 3D filmen
Gefriergegossene Werkstoffe lassen sich für viele Einsatzbereiche nutzen: als Batterieelektroden, Katalysatormaterialien oder in der Biomedizin
Gefriergussverfahren benötigen mehrere Schritte: Zunächst wird eine Substanz in einem Lösungsmittel gelöst oder aufgeschwemmt und daraufhin in einer Kühlzelle mit einer am Boden angelegten Kühlrate eingefroren (gerichtetes Gefrieren). Nach dem Gefrieren wird das kristallisierte Lösungsmittel durch Sublimation entfernt. Übrig bleiben die vormals gelöste Substanz und aufgeschwemmte Partikel, die die Zellwände einer komplexen, hochporösen Architektur bilden.
Gefriergegossene Werkstoffe lassen sich für viele Einsatzbereiche nutzen: Aufgrund ihrer enormen inneren Oberflächen eignen sie sich als Batterieelektroden oder Katalysatoren, ihre gerichtete Porenstruktur ermöglicht aber auch biomedizinische Anwendungen, zum Beispiel als Gerüststrukturen zur Regeneration von Nervenbahnen. Wie aber der Prozess der hierarchischen Strukturbildung beim Gefrieren im Detail abläuft, und wie sich die gewünschte wabenartige, gerichtete Porosität und die Zellwände mit ihren Oberflächenstrukturen bilden, blieb bisher im Dunkeln.
Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin hat zusammen mit seinem Team eine Methode entwickelt, mit der sich diese Prozesse genau beobachten lassen. „Mit der Röntgentomoskopie können wir den Mechanismus der Strukturbildung in situ mit hoher räumlicher und zeitlicher Auflösung abbilden und dabei sogar flüchtige Phänomene und Übergangsstrukturen beobachten“, erklärt der Physiker. Mit einem ultraschnellen Drehtisch, intensiver Röntgenstrahlung sowie einem extrem schnellen Detektor und Software für die rasche Auswertung der Röntgendaten hat das HZB-Team gemeinsam mit Kollegen an der Swiss Light Source des Paul-Scherrer-Instituts das Gefriergießen an einem Modellsystem untersucht und die hohe Leistungsfähigkeit der Methode bewiesen. „Für diese Studie haben wir eine neue Messzelle mit Sensoren entwickelt, um den Temperaturgradienten genau zu erfassen“, sagt Dr. Paul Kamm (HZB), Erstautor der Studie. Pro Sekunde entstand ein 3D-Tomogramm mit einer räumlichen Auflösung von 6 µm. Über 270 Sekunden ließ sich der gesamte Prozess des Gefrierens dokumentieren.
Prof. Ulrike G. K. Wegst von der Northeastern University, USA, hatte vorgeschlagen, als polymeres Modellsystem eine wässrige Zuckerlösung zu untersuchen, weil erstens wässrige Lösungen noch immer im Gefriergussverfahren dominieren, und zweitens sich ihr Verhalten gut rechnerisch simulieren lässt. „Wir konnten nun erstmals experimentell beobachten wie die Eiskristalle aus der Lösung gerichtet wachsen“, sagt Wegst. „Dabei dokumentieren die Aufnahmen, wie sich Instabilitäten beim Kristallwachstum bilden, und wie diese die Zuckerphase formen. Dabei entstehen charakteristische, organisch wirkende Strukturen, die an Quallen und Tentakel erinnern.“ Interessant ist auch, dass einige dieser Strukturen teilweise wieder verschwinden.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Paul H. Kamm, Kaiyang Yin, Tillmann R. Neu, Christian M. Schlepütz, Francisco García‐Moreno, Ulrike G. K. Wegst; "X‐Ray Tomoscopy Reveals the Dynamics of Ice Templating"; Advanced Functional Materials, 2023-8-18
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.