Analyse von Mikroskopaufnahmen: Neue Open-Source-Software macht KI-Modelle leichter & grüner

Keine speziellen Kenntnisse notwendig

26.01.2024
Prof. Dr. Anika Grüneboom, ISAS

Semantische 3D-Segmentierung von Osteozyten in Mäuseknochen (Aufnahmen via Lichtblatt-Fluoreszenzmikroskop)

künstliche Intelligenz (KI) hat sich als unverzichtbare Komponente der Auswertung mikroskopischer Daten etabliert. Doch während die KI-Modelle immer besser und komplexer werden, steigt auch der Rechenaufwand – und damit einhergehend der Energieverbrauch. Forschende des Leibniz-Instituts für Analytische Wissenschaften (ISAS) und der Universität Peking haben deswegen eine kostenfreie Kompressionssoftware entwickelt, mit der Wissenschaftler:innen bereits bestehende Bioimaging-KI-Modelle schneller und mit wesentlich geringerem Energieaufwand ausführen können. Ihre nutzerfreundliche Toolbox namens EfficientBioAI (Open Source) haben die Forschenden nun im Fachjournal Nature Methods vorgestellt.

Moderne Mikroskopieverfahren produzieren eine Vielzahl hochauflösender Bilder, einzelne Datensätze können tausende davon umfassen. Um die Datenmengen zuverlässig analysieren zu können, nutzen Wissenschaftler:innen häufig KI-gestützte Software. Mit immer komplexeren KI-Modellen kann sich die Latenzzeit (Verarbeitungszeit) für Bilder jedoch deutlich erhöhen. „Eine hohe Netzwerklatenz, beispielsweise bei besonders großen Bildern, führt zu einer höheren Rechenleistung und schließlich zu einem gesteigerten Energieverbrauch“, sagt Dr. Jianxu Chen, Leiter der Nachwuchsgruppe AMBIOM – Analysis of Microscopic BIOMedical Images am ISAS.

Neue Anwendungsgebiete für eine bekannte Technik

Um hohe Latenzen bei der Bildanalyse zu vermeiden, insbesondere bei Geräten mit begrenzter Rechenleistung, verwenden die Forschenden komplexe Algorithmen und komprimieren damit die KI-Modelle. Das heißt, sie reduzieren die Menge der Berechnungen in den Modellen, während diese eine vergleichbare Vorhersagegenauigkeit beibehalten. „Modellkomprimierung ist eine Technik, die bei der digitalen Bildverarbeitung, der sogenannten Computer Vision, und der KI weit verbreitet ist, um Modelle leichter und grüner zu machen“, erklärt Chen. Dabei kombinieren Forschende verschiedene Strategien, um den Speicherverbrauch zu reduzieren, die Modellinferenz, also den „Denkprozess“ des Modells zu beschleunigen – und somit Energie zu sparen. Zum Einsatz kommt beispielsweise Pruning, das überflüssige Knoten aus dem neuronalen Netzwerk entfernt. „In der Bioimaging-Gemeinschaft sind diese Techniken häufig unbekannt. Daher wollten wir eine gebrauchsfertige und einfache Lösung entwickeln, um sie auf gängige KI-Tools beim Bioimaging anzuwenden“, sagt Yu Zhou, Erstautor der Publikation und Doktorand bei AMBIOM.

Bis zu ca. 81 Prozent Energieeinsparung

Um ihre neue Toolbox auf die Probe zu stellen, haben die Forschenden um Chen ihre Software an mehreren realen Anwendungen getestet. Bei unterschiedlicher Hardware und verschiedenen Bioimaging-Analyseaufgaben konnten die Komprimierungstechniken die Latenzzeit erheblich verringern und den Energieverbrauch zwischen 12,5 bis 80,6 Prozent senken. „Unsere Versuche haben gezeigt, dass EfficientBioAI die Effizienz neuronaler Netzwerke bei Bioimaging-Analysen deutlich erhöhen kann, ohne die Genauigkeit der Modelle einzuschränken“, resümiert Chen. Die Energieeinsparungen verdeutlicht er am Beispiel des allgemein verwendeten CellPose-Modells: Würden eintausend Nutzer:innen die Toolbox nutzen, um das Modell zu komprimieren und auf den Jump-Target-ORF-Datensatz (etwa eine Million Mikroskopbilder von Zellen) anwenden, könnten sie Energie einsparen, die circa den Emissionen einer Autofahrt von etwa 7.300 Meilen (ca. 11.750 Kilometer) entsprechen.

Keine speziellen Kenntnisse notwendig

Die Autor:innen legen viel Wert darauf, EfficientBioAI möglichst vielen Wissenschaftler:innen in der biomedizinischen Forschung zugänglich zu machen. Forschende können die Software installieren und nahtlos in bereits existierende PyTorch-Bibliotheken (Open-Source-Programmbibliothek für die Programmiersprache Python) integrieren. Für einige sehr verbreitete Modelle wie etwa Cellpose, können Forschende die Software nutzen, ohne selbst etwas am Code ändern zu müssen. Für spezifische Änderungswünsche stellt die Gruppe außerdem mehrere Demos und Tutorials zur Verfügung. Mit nur ein paar geänderten Code-Zeilen lässt sich die Toolbox dann auch für angepasste KI-Modelle verwenden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Limsophy LIMS

Limsophy LIMS von AAC Infotray

Optimieren Sie Ihre Laborprozesse mit Limsophy LIMS

Nahtlose Integration und Prozessoptimierung in der Labordatenverwaltung

LIMS
OMNIS

OMNIS von Metrohm

OMNIS – die Plattform zur Integration der Metrohm Titrando Gerätegeneration

OMNIS ermöglicht die Kombination von Bestandskomponenten mit neuester OMNIS Hard- und Software

Laborsoftware
LAUDA.LIVE

LAUDA.LIVE von LAUDA

LAUDA.LIVE - Die digitale Plattform für Ihre Geräteverwaltung

Viefältige Flottenmanagementoptionen für jedes LAUDA Gerät - mit und ohne IoT-Anbindung

Laborsoftware
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen