Materialforschung Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden
Eine neue Art des Entmischungsverhaltens
Die meisten technischen Materialien haben eine polykristalline Struktur: Sie bestehen aus verschiedenen Kristallen, in denen die Atome in einem regelmäßigen Gitter angeordnet sind. Diese Kristalle sind nicht überall gleich ausgerichtet, und die Grenzflächen, die sie voneinander trennen, werden als Korngrenzen bezeichnet. „Diese Korngrenzen haben einen enormen Einfluss auf die Haltbarkeit und die Gesamteigenschaften eines Materials“, sagt Dr. Vivek Devulapalli, der die mikroskopischen Arbeiten der Studie durchgeführt hat. Er fügt hinzu: „Aber wir verstehen nur sehr begrenzt, was passiert, wenn sich Elemente an den Korngrenzen anlagern, und wie sie die Eigenschaften eines Materials beeinflussen.“
Der Schlüssel zum Erfolg war die Beobachtung und Modellierung der Strukturen mit atomarer Auflösung. Die Forschenden setzten ihre Ergebnisse aus der Rastertransmissionselektronenmikroskopie mit atomarer Auflösung mit fortschrittlichen Computersimulationen in Beziehung. Ein neuer Algorithmus zur Vorhersage der Korngrenzstruktur konnte die experimentell beobachteten Strukturen erzeugen und ermöglicht somit die Untersuchung ihrer Struktur. „Unsere Simulationen zeigen, dass wir für unterschiedliche Eisengehalte immer die Käfigstrukturen als die zugrundeliegenden Bausteine der verschiedenen Korngrenzphasen finden. Je höher der Eisengehalt an der Korngrenze ist, desto mehr ikosaedrische Einheiten treten auf und agglomerieren schließlich“, erklärt Dr. Enze Chen von der Stanford University. Ein Ikosaeder ist ein geometrisches Objekt mit zwölf Ecken oder Scheitelpunkten, die in diesem Fall von Atomen besetzt sind, und 20 Ebenen.
„Wir haben mehr als fünf verschiedene Strukturen oder Korngrenzphasen derselben Grenzfläche identifiziert, die alle aus unterschiedlichen Anordnungen der gleichen ikosaedrischen Käfigeinheiten bestehen“, fügt Dr. Timofey Frolov hinzu, der die Berechnungen der Studie leitete.
Quasikristallin-ähnliche Korngrenzphasen
Bei näherer Betrachtung der Käfigstrukturen zeigte sich, dass die Atome eine ikosaedrische Anordnung einnehmen, bei der sich die Eisenatome im Zentrum des Ikosaeders befinden und die Titanatome seine Ecken besetzen. „Die ikosaedrischen Käfige ermöglichen eine dichte Packung von Eisenatomen, und da sie aperiodische Cluster bilden können, kann mehr als die zwei- bis dreifache Menge an Eisen an der Korngrenze untergebracht werden“, erklärt Vivek Devulapalli. „Es sieht so aus, als ob Eisen in quasikristallinen Korngrenzphasen gefangen ist“, fügt Chen hinzu. „Dies wird auf die Eigenschaften der ikosaedrischen Käfige zurückgeführt“, sagt Liebscher, „und wir müssen nun Wege finden, um zu untersuchen, wie sie die Grenzflächeneigenschaften und damit das Materialverhalten beeinflussen.“
Neue Wege für das Materialdesign
Das Verständnis und die Kontrolle der Bildung ikosaedrischer Korngrenzphasen mit unterschiedlichen Strukturen und Eigenschaften kann möglicherweise dazu genutzt werden, die Eigenschaften von Werkstoffen selbst maßzuschneidern. Die Forschenden wollen nun systematisch untersuchen, wie diese neuartigen Korngrenzzustände genutzt werden können, um das Materialverhalten zu beeinflussen, eine bestimmte Materialfunktionalität einzustellen und Materialien widerstandsfähiger gegen Degradationsprozesse zu machen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.