Jülicher Forscher schauen ins Innere von Molekülen
Forschungszentrum Jülich
Für den Blick in die Nanowelt nutzten die Jülicher Forscher ein Rastertunnelmikroskop. Dessen dünne Metallspitze fährt wie die Nadel eines Plattenspielers über die Probenfläche und registriert mittels kleinster elektrischer Ströme die atomaren Unebenheiten und Unterschiede von rund einem Nanometer. Aber selbst wenn die Spitze des Mikroskops nur noch ein Atom breit ist, ließ sich damit bisher nicht in das Innere von Molekülen sehen.
"Um die Sensitivität für organische Moleküle zu steigern, haben wir einen Sensor und Signalwandler an die Spitze gesetzt", erklärt Dr. Ruslan Temirov. Die beiden Funktionen erfüllt ein kleines Molekül aus zwei Deuterium-Atomen, auch schwerer Wasserstoff genannt. Da es sehr beweglich an der Spitze hängt, kann es den Konturen folgen und beeinflusst die Ströme, die über die Mikroskopspitze fließen. Als eines der ersten Moleküle untersuchten Temirov und seine Kollegen die Verbindung Perylentetracarbonsäuredianhydrid (PTCDA). Sie besteht aus 26 Kohlenstoff-, acht Wasserstoff- und sechs Sauerstoffatomen, die sieben zusammenhängende Ringe bilden. In bisherigen Aufnahmen wird es nur als rund ein Nanometer großer konturloser Fleck abgebildet. Das Jülicher Rastertunnelmikroskop lässt - wie auf einer Röntgenaufnahme - die innere, wabenartige Struktur erkennen, die von den Ringen gebildet wird.
"Die bestechende Einfachheit der Methode macht sie für zukünftige Forschung so wertvoll", sagt Prof. Stefan Tautz, Direktor des Jülicher Instituts für Bio- und Nanosysteme. Die Jülicher Methode ist mittlerweile zum Patent angemeldet und lässt sich einfach mit kommerziellen Rastertunnelmikroskopen koppeln. "Die räumlichen Dimensionen im Innern von Molekülen lassen sich jetzt schon in wenigen Minuten bestimmen", so Tautz, "und die vorherige Präparation der Proben beruht weitgehend auf Standardverfahren." Im nächsten Schritt wollen die Jülicher noch eine Kalibration der gemessenen Stromstärken vornehmen. Wenn das gelingt, könnte damit aus den gemessenen Stromstärken direkt auf die Art der Atome geschlossen werden.
Nachdem sie erste Bilder mit dem neuen Verfahren bereits im Jahre 2008 veröffentlicht hatte, konnte die Forschergruppe um Tautz und Temirov nun das quantenmechanische Wirkprinzip des Deuteriums an der Mikroskopspitze erklären. Dabei half auch eine computergestützte Berechnung der Arbeitsgruppe von Prof. Michael Rohlfing an der Universität Osnabrück. Die sogenannte kurzreichweitige Pauli-Abstoßung, eine quantenphysikalische Kraft zwischen Deuterium und Molekül moduliert die Leitfähigkeit und erlaubt es, sehr sensitiv die feinen Strukturen zu messen.
Das Jülicher Verfahren kann eingesetzt werden, um Struktur und Ladungsverteilung von flachen Molekülen zu vermessen, die als organische Halbleiter oder als Teil von zukünftigen, schnellen und effizienten elektronischen Bauelementen verwendet werden könnten. Aber auch große dreidimensionale Biomoleküle wie Proteine könnten untersucht werden, wenn die Methoden verfeinert werden.
Originalveröffentlichung: Weiss et al.; "Imaging Pauli repulsion in scanning tunneling microscopy"; Physical Review Letters 2010
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Kjel- / Dist Line von Büchi
Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen
Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen
AZURA Purifier + LH 2.1 von KNAUER
Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz
Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.