Freie Bahn für freie Elektronen - Charakterisierung photogenerierter Elektronen mit Hilfe von Quantenpunktkontakten
Dadurch konnten NIM-Wissenschaftler um Professor Alexander Holleitner (TU München) in Kooperation mit den ebenfalls an NIM beteiligten Arbeitsgruppen von Professor Jörg Kotthaus (Ludwig-Maximilians-Universität München) und Professor Peter Hänggi (Universität Augsburg) nun erstmals die räumlichen Wege sogenannter photogenerierter Elektronen in nanoskaligen Schaltkreisen abbilden und analysieren.
Das Kernstück der Methode bildet ein sogenannter Quantenpunktkontakt (QPC). Dabei handelt es sich um einen schmalen, elektrisch leitenden Kanal in einem Halbleiter-Schaltkreis. Die Wissenschaftler strukturierten den Kanal mit etwa 70 Nanometern derart schmal, dass er vergleichbar ist mit der Elektronenwellenlänge im Halbleitermaterial. Der Trick dabei ist, dass immer nur ein Elektron durch den Kanal passt und man daher den elektrischen Strom mit hoher Präzision vermessen kann. In der aktuellen Veröffentlichung wurde diese Methode nun erstmals auf photogenerierte Elektronen angewendet.
Im Versuchsaufbau bringt statt der Sonne ein Laserstrahl die Elektronen in den angeregten Zustand. Anschließend werden diese photogenerierten Elektronen durch Einsatz des Quantenpunktkontakts charakterisiert. Dabei konnten die Wissenschaftler erstmals zeigen, dass photogenerierte Elektronen um freie Weglängen von einigen Mikrometern laufen können, ohne an Kristallatome zu stoßen. Sie stellten zudem fest, dass die geometrische Form der Schaltkreise die Laufbahnen der Elektronen stark beeinflussen kann: Diese können sogar "um die Ecke" laufen, indem sie an den Schaltkreis-Rändern reflektiert werden.
Die Erkenntnisse und Analysemöglichkeiten, die die neu entwickelte Methode liefert, sind für eine Reihe von Anwendungen von Bedeutung. Dazu gehört insbesondere die Weiterentwicklung elektronischer Bauteile, zum Beispiel Photodetektoren, Transistoren wie den "High electron mobility transistors (HEMT)" sowie von Elementen, die den magnetischen Freiheitsgrad (Spin) von Elektronen zur Verarbeitung von Informationen nutzen.
Originalveröffentlichung: Klaus-Dieter Hof, Franz J. Kaiser, Markus Stallhofer, Dieter Schuh, Werner Wegscheider, Peter Hänggi, Sigmund Kohler, Jorg P. Kotthaus und Alexander W. Holleitner; "Spatially resolved ballistic optoelectronic transport measured by quantized photocurrent spectroscopy"; Nano Lett., 2010, 10 (10), pp 3836-3840
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.