Blick in die Tiefe: Unterschiedliche elektronische Zustände beobachtet

Wissenschaftler der Uni Mainz nutzen neuartige Lichtquelle zum Blick ins Innere von Heusler-Materialien

16.09.2011 - Deutschland

Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) ist es gelungen, in die Struktur von Heusler-Materialien vorzudringen und das Verhalten der Elektronen zu beobachten. Sie verwenden dazu eine besondere Form der Photoelektronenspektroskopie, die es möglich macht, viel tiefer als bisher in die Materie vorzudringen und die elektronische Beschaffenheit zu untersuchen. „Wir konnten dazu eine neuartige, sehr brillante Lichtquelle aus Japan nutzen. Dadurch hatten wir eine ausreichend große Lichtintensität, um ins Innere der Heusler-Drähte zu blicken“, erklärt Dr. Gerhard Fecher, der die Arbeiten am Institut für Anorganische Chemie und Analytische Chemie leitet.

Bei Heusler-Materialien handelt es sich um intermetallische Stoffe, die von Friedrich Heusler Anfang des 20. Jahrhunderts entdeckt wurden. Sie zeichnen sich dadurch aus, dass ihre einzelnen Bestandteile nicht magnetisch sind, in einer Legierung sich zusammen jedoch als Ferromagnet erweisen können. Es wird von dieser Gruppe mit über 1500 Verbindungen erwartet, dass sie einen wesentlichen Beitrag zu neuen Werkstoffen besonders für die Informationsverarbeitung liefern. Für ihre Untersuchungen haben die Wissenschaftler zwei Heusler-Verbindungen auswählt: Nickeltitanzinn und Nickelmanganantimon. Nickeltitanzinn ist ein Halbleiter, der aus drei Metallen besteht, die einzeln keine Halbleiter sind. Das Material wird jetzt schon in der thermoelektrischen Energieerzeugung eingesetzt, etwa in Auspuffen für die Wärmerückgewinnung. Nickelmanganantimon war das erste Material, von dem 1983 aufgrund theoretischer Erwägungen vorhergesagt wurde, dass es einen Spinstrom haben würde. Der Spin der Elektronen, den man sich als eine Art Drehrichtung vorstellen kann, wird in der Zukunftselektronik „Spintronik“ genutzt.

„Anhand der zwei unterschiedlichen Materialien wollten wir feststellen, woher ihre Eigenschaften kommen, was den Unterschied ausmacht zwischen einem Halbleiter, einem Metall und einem Ferromagneten“, erklärt Fecher. Mit Hilfe von Licht, das durch einen Diamantkristall polarisiert wurde, konnten die Chemiker feststellen, dass die Leuchtelektronen in den jeweiligen Materialien einen anderen Charakter haben. „Damit haben wir zum ersten Mal gezeigt, dass sich die elektronischen Zustände in Halbleitern, Metallen und Ferromagneten unterscheiden“, fasst Fecher die Ergebnisse zusammen.

Mit einer ganz ähnlichen Methode haben internationale Forschungen, an denen ebenfalls Wissenschaftler aus Mainz beteiligt sind, vor kurzem die Eigenschaften in tiefen Schichten untersucht. Auch in diesem Fall war es gelungen, den Charakter von Elektronen im Kristallinnern zu erkennen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
5+ White Paper
15+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
5+ White Paper
15+ Broschüren