Neues Material für schnellere Elektronik
Lichtpulse in Strom umwandeln
Wenn man Daten durch Lichtpulse überträgt, wie das etwa in einem Glasfaserkabel geschieht, dann müssen diese Pulse anschließend in elektrische Signale verwandelt werden, die der Computer weiterverarbeiten kann. Diese Umwandlung von Licht in elektrischen Strom geschieht über den Photoelektrischen Effekt, den Albert Einstein erklärte. Trifft Licht auf bestimmte Materialien, können Elektronen plötzlich aus ihrem festen Platz gelöst werden und sich frei bewegen – elektrischer Strom beginnt zu fließen. „Solche Lichtdetektoren, die mit elektrischen Signalen auf Lichtbestrahlung reagieren, gibt es schon lange. Wenn man sie allerdings aus Graphen herstellt, reagieren sie auf das Licht wesentlich schneller als andere Materialien das können“, erklärt Alexander Urich, der gemeinsam mit Thomas Müller und Professor Karl Unterrainer an der TU Wien die elektrischen und optischen Eigenschaften von Graphen untersuchte.
Analyse mit ultrakurzen Laserpulsen
Dass Graphen in der Lage ist, Licht ungeheuer schnell in elektrische Signale umzuwandeln, konnte Thomas Müller schon im Vorjahr zeigen. Die genaue Reaktionszeit des Materials konnte zunächst aber noch nicht genau bestimmt werden – der Photoeffekt in Graphen läuft schneller ab, als man mit herkömmlichen elektronischen Methoden messen konnte. Erst jetzt konnte mit aufwändigen technischen Tricks Genaueres über das Material ermittelt werden: Bei den Experimenten an der TU Wien werden kurz hintereinander zwei ultrakurze Laserpulse auf den Graphen-Photodetektor abgefeuert, gemessen wird der Strom, der dabei entsteht. Variiert man den zeitlichen Abstand zwischen den Lichtpulsen, so lässt sich feststellen, mit welcher maximalen Frequenz die Detektoren betrieben werden können. „Mit Hilfe dieser Methode konnten wir zeigen, dass die von uns hergestellten Detektoren bis zu einer Frequenz von 262 GHz verwendet werden können“, sagt Thomas Müller (TU Wien). Damit läge die theoretisch erreichbare Obergrenze der Datenübertragung mit Graphen-Photodetektoren bei mehr als 30 Gigabyte pro Sekunde. Inwieweit das technisch umsetzbar ist, wird sich erst zeigen, doch das Resultat verdeutlicht das große Potential von Graphen für besonders schnelle optoelektronische Bauteile.
Schnelles Signal – schnell wieder vorbei
Der wesentliche Grund für die hohen Frequenzen, die man mit den neuartigen Licht-Detektoren erreichen kann, ist die kurze Lebensdauer der Ladungsträger in Graphen. Die Elektronen, die durch das Licht aus ihrem Platz gelöst werden und zum elektrischen Stromfluss beitragen, suchen sich schon nach wenigen Picosekunden (Millionstel einer Millionstelsekunde, 10^(-12) Sekunden) einen neuen, festen Platz – und sobald das geschehen ist, kann auch schon das nächste Lichtsignal kommen, neue Photoelektronen herauslösen und das nächste elektrisches Signal erzeugen.
Die schnelle „Reaktionszeit“ von Graphen ist ein weiterer Eintrag auf der Liste der bemerkenswerten Eigenschaften des Materials. In Graphen können sich außerdem elektrische Ladungsträger außerordentlich weit bewegen, ohne gestört zu werden. Graphen kann Licht vom infraroten bis zum sichtbaren Bereich des Spektrums absorbieren – im Gegensatz zu gewöhnlichen Halbleitern, die nur auf einen schmalen Bereich des Spektrums beschränkt sind. Außerdem kann Graphen Wärme extrem gut leiten und kann mit ungeheurer Kraft gespannt werden, ohne zu reißen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.