Per Zufall zu einer neuen Messmethode: Jo-Jo-Effekt macht Schwingungen von Biomembranen sichtbar

09.10.2015 - Deutschland

Ein scheinbar gescheiterter Messversuch hat Jülicher Biomechanikern eine unerwartete Entdeckung beschert. Sie haben eine neue Methode gefunden, um Schwingungen von Biomembranen zu messen. Solche Messungen sind wichtig, um besser zu verstehen, wie diese hauchdünnen und sehr elastischen Trennschichten den Transport von Stoffen in Zellen beeinflussen. Mit der neuen Technik können Forscher Membranschwingungen in lebenden Zellen länger und flexibler als bisher erfassen. Daraus ergeben sich neue Forschungsperspektiven.

Prof. Rudolf Merkel vom Jülicher Institute of Complex Systems (ICS-7) und seine damalige Doktorandin Cornelia Monzel wollten eigentlich die Diffusion von Molekülen durch eine Biomembran untersuchen. Solche Biomembranen, die für alle Zellmembranen charakteristisch sind, grenzen Bereiche innerhalb einer Zelle voneinander ab. Sie ermöglichen aber ausgewählten Molekülen von einer Seite der Membran zur anderen zu gelangen. Da die Membranen eine zähflüssige bis flüssige Konsistenz haben, können sich dort viele der Moleküle frei bewegen.

Für ihre Untersuchungen nutzten die Jülicher ein spezielles Lichtmikroskop, ein konfokales Fluoreszenz-Mikroskop. Dabei wird ein Teil der Moleküle mit einem Farbstoff markiert, der unter Lichteinfluss leuchtet. Das Mikroskop misst die Helligkeit dieser Moleküle in einem kleinen Probenausschnitt: Jedes markierte Molekül, das in diesen Ausschnitt wandert oder ihn verlässt, erscheint als ein helles Signal. Je schneller sich die Moleküle bewegen, desto kürzer ist das Signal zu sehen. Aus dem Signal lässt sich die Geschwindigkeit der Diffusion bestimmen. Der Knackpunkt: Wird zu viel Farbstoff verwendet, lässt sich die Diffusion einzelner Moleküle nicht mehr berechnen. Es leuchten dann zu viele einzelne Moleküle, so dass quasi der gesamte Ausschnitt dauerhaft erhellt wird. "Da wir aus Versehen zu viel Farbstoff benutzt haben, ist uns genau das passiert. Allerdings haben wir etwas Unerwartetes beobachtet: Die Helligkeit dieses großen Flecks schwankte", blickt Rudolf Merkel zurück.

Zuerst dachten die Forscher an einen Messfehler. Doch dann kam ihnen eine Idee: "Vielleicht war die Ursache für dieses Schwanken gar nicht die Bewegung der Moleküle, sondern Positionsänderungen der Biomembran", so Merkel. Denn eine lebende Membran ist kein starres Objekt. Sie bewegt sich auch während solcher Messungen auf und ab – und damit auch die markierten Moleküle in der Membran. Das ist so, als ob man mit der Kamera von unten ein auf- und abschwingendes Jo-Jo fotografiert. Ein konfokales Fluoreszenz-Lichtmikroskop ist aber auf eine bestimmte Höhe eingestellt, so als ob die Kamera auf einen bestimmten Bereich scharf gestellt wurde. Bei einer Kamera würden die Aufnahmen zwischen scharf und unscharf schwanken. Bei der Mikroskopie gilt: Je näher ein Molekül – oder in diesem Fall die gesamte Membran – dieser voreingestellten Höhe kommt, desto heller wird das Signal wahrgenommen. Cornelia Monzel führte weitere Messungen an Modellmembranen durch, deren Eigenschaften bereits genau bekannt waren. Die Ergebnisse passten perfekt, eine neue Messtechnik war entdeckt.

Neben technischen Vorteilen – so liefert die Messtechnik nicht wie andere Methoden alle 10 Millisekunden ein Bild, sondern alle 10 Mikrosekunden – eröffnet sie der medizinischen Forschung neue Perspektiven: So haben die Jülicher Forscher mit ihrer Methode die Membranbewegung roter Blutzellen untersucht. Entgegen der bislang vorherrschenden Meinung stellten sie fest, dass es tatsächlich einen sehr geringen, aber durchaus signifikanten Anteil an Eigenbewegung gibt. Außerdem konnten sie erstmals messen, wie sich die Membran von weißen Blutzellen verstärkt bewegt, wenn die Zellen mit dem Protein Interferon-Gamma angeregt werden – bisher ließ sich die verstärkte Aktivität nur beobachten. Interferon-Gamma ist ein vom menschlichen Immunsystem produzierter Botenstoff, der an der Bekämpfung von Krankheitserregern beteiligt ist.

"Krankheiten und Mutationen beeinflussen die Membranschwingungen. Mit unserer Technik könnten wir in Zukunft diesen Einfluss messen und vergleichen. Langfristig ließen sich so aus Messungen der Membranschwingungen Rückschlüsse auf Krankheiten ziehen", blickt Rudolf Merkel voraus. Eventuell spielen bestimmte Proteine dabei eine Rolle, die dann gezielt beeinflusst werden könnten.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

1 Produkte
1 Broschüren
Themenwelt anzeigen
Themenwelt Fluoreszenzmikroskopie

Themenwelt Fluoreszenzmikroskopie

Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.

1 Produkte
1 Broschüren