Theorie lüftet das Geheimnis der Protein-Membran-Interaktionen
Durch Aufklärung von Zusammenwirken von Proteinen mit Membranen das Zellverhalten besser verstehen
"Wenn man über die grundlegenden Komponenten lebender Systeme nachdenkt, gehören Proteine zu den wichtigsten, direkt neben den Nukleinsäuren", sagt Gavin King, Associate Professor für Physik am College of Arts and Science an der MU und Joint Associate Professor für Biochemie. "Proteine führen in der Zelle mehr Aktivität aus als DNA."
Proteine sind die Arbeitspferde einer Zelle. Etwa 30 Prozent der Proteine in einer Zelle interagieren häufig mit Membranen oder befinden sich in Membranen, um den Informations- und Materialfluss in und aus den Zellen zu erleichtern und zu regulieren. Mit hochpräzisen Experimenten der Rasterkraftmikroskopie maß King's Team die Kraft, die erforderlich ist, damit sich Proteine von der Membran lösen können.
"Stell dir vor, du gehst angeln, und deine Angelrute ist ein Kraftmikroskop", sagte King. "Am Ende unserer Angelrute befestigten wir einen Köder, in diesem Fall ein wirklich kurzes Protein. Auf sehr sorgfältige und kontrollierte Weise senken wir die Angelrute in die Nähe einer Membran. In einer Weise, die wir nicht kontrollieren oder direkt beobachten können, wird der Köder häufig von den Fischen gebissen, in diesem Fall von der Membran. Wenn der Fisch beißt, können wir den Köder zurückziehen und fragen, wie viel Kraft es braucht, um den Köder aus dem Mund des Fisches zu holen. Was uns überrascht hat, ist, dass, wenn man das gleiche Experiment wiederholt macht, man unterschiedliche Ergebnisse erhält. Wir hatten Mühe, ein Modell zu finden, das dieser Komplexität gerecht wird."
Um diese Frage zu beantworten, hat Ioan Kosztin, Professor für Physik am College of Arts and Science an der MU, mit King zusammengearbeitet und ein theoretisches Modell entwickelt, das zeigt, dass es mehr als eine Möglichkeit gibt, wie sich ein Protein von der Membran lösen kann, die mehrere verschiedene Wege hat. Sie entdeckten, dass die Protein-Membran-Interaktion ein "catch-bond"-Verhalten zeigen kann.
"Das Verhalten von Catch-Bond ähnelt einer chinesischen Fingerfalle, bei der umgekehrt, je härter man an der Falle zieht, desto stärker zieht sich die Falle zurück", sagte Kosztin. "Obwohl ähnliches Verhalten bereits auf zellulärer Ebene beschrieben wurde, ist dies nach unserem Wissen der erste Bericht über Protein-Membran-Interaktionen."
Die Forscher hoffen, dass diese Entdeckung eine Grundlage für zukünftige Studien über Signalwege in Zellen liefern wird und wie Medikamente die Zellfunktionen verändern.
Originalveröffentlichung
Milica Utjesanovic, Tina R. Matin, Krishna P. Sigdel, Gavin M. King & Ioan Kosztin; "Multiple stochastic pathways in forced peptide-lipid membrane detachment"; Scientific Reports; 2019
Meistgelesene News
Originalveröffentlichung
Milica Utjesanovic, Tina R. Matin, Krishna P. Sigdel, Gavin M. King & Ioan Kosztin; "Multiple stochastic pathways in forced peptide-lipid membrane detachment"; Scientific Reports; 2019
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Kjel- / Dist Line von Büchi
Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen
Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen
AZURA Purifier + LH 2.1 von KNAUER
Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz
Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.