Biosensor misst Signalmoleküle in Zilien
Wissenschaftler können die Dynamik von Signalmolekülen nun auch in kleinsten Zellbereichen untersuchen
© Forschungszentrum caesar
Zellen vermessen ständig ihre Umgebung. Sie verarbeiten die Informationen und ändern daraufhin ihr Verhalten – sie wachsen, bewegen sich oder ändern ihre Struktur. Die Information über die Umgebung wird an der Oberfläche der Zelle aufgenommen und durch Signalmoleküle, sogenannte sekundäre Botenstoffe, in das Zellinnere übertragen. Einer der bekanntesten sekundären Botenstoffe ist cAMP, der bei vielen biochemischen Signalwegen eine wichtige Rolle spielt.
Um Information in ihrer Umwelt zu erkennen, nutzen viele Zellen haarähnliche Strukturen auf ihrer Oberfläche – sogenannte Zilien oder Flagellen. Manche Zilien können sich bewegen, andere sind starr. Ein Spezialfall eines beweglichen Ziliums ist das Flagellum mit seinem wohl bekanntesten Beispiel, dem Spermienschwanz. Die Bewegung solcher beweglichen Zilien wird häufig durch cAMP gesteuert.
Bislang war es für Wissenschaftler schwierig, Änderungen der cAMP-Konzentration in den Zilien zu untersuchen. Sie benötigten dazu fluoreszierende Biosensoren, die sich jedoch nur mühsam in diese oft winzigen Bereiche der Zelle einbringen lassen und zudem nicht empfindlich genug sind, um sehr geringe cAMP-Konzentrationen zu messen.
Das Forscherteam stellt nun einen neuen cAMP-Biosensor vor, der auf der sogenannten FRET-Technik (Förster resonance energy transfer) beruht. Mit FRET können Forscher den Energietransfer zwischen zwei lichtempfindlichen Molekülen messen. Im neuen cAMP-Biosensor hängt die Energieübertragung vom Abstand und der Orientierung zweier lichtempfindlicher Moleküle ab. Nach der Bindung von cAMP vergrößert sich der Abstand der beiden Moleküle; damit verringert sich die übertragbare Energie.
Der von den caesar-Wissenschaftlern entwickelte Biosensor reagiert bereits auf minimale Konzentrationsänderungen des Signalmoleküls cAMP. Die Forscher testeten den Sensor im Flagellum von Mausspermien und konnten untersuchen, wie dort die cAMP-Produktion reguliert wird. Interessant ist hierbei vor allem, dass sich die cAMP-Dynamik in unterschiedlichen Bereichen des Flagellums deutlich unterscheidet.
In der Zukunft soll der neue Biosensor auch in anderen Strukturen und Zellbereichen eingesetzt werden, um cAMP-gesteuerte Signalwege besser zu verstehen.
Originalveröffentlichung
Mukherjee, S., Jansen, V., Jikeli ,J. F., Hamzeh, H., Alvarez, L., Dombrowski, M., Balbach, M., Strünker, T., Seifert, R., Kaupp U. B. & Wachten, D.; "A novel biosensor to study cAMP dynamics in cilia and flagella"; eLife, 2016
Originalveröffentlichung
Mukherjee, S., Jansen, V., Jikeli ,J. F., Hamzeh, H., Alvarez, L., Dombrowski, M., Balbach, M., Strünker, T., Seifert, R., Kaupp U. B. & Wachten, D.; "A novel biosensor to study cAMP dynamics in cilia and flagella"; eLife, 2016
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Octet SF3 von Sartorius
Molekulare Bindungskinetik und Affinität mit einer einzigen dynamischen SPR-Injektion
Die Kurvenkrümmung ist der Schlüssel akkurater biomolekularer Wechselwirkungsanalyse
Octet RH16 and RH96 von Sartorius
Effiziente Proteinanalyse im Hochdurchsatz zur Prozessoptimierung und Herstellungskontrolle
Markierungsfreie Protein-Quantifizierung und Charakterisierung von Protein-Protein Wechselwirkungen
Octet R2 / Octet R4 / Octet R8 von Sartorius
Vollgas auf 2, 4 oder 8 Kanälen: Molekulare Wechselwirkungen markierungsfrei in Echtzeit analysieren
Innovative markierungsfreie Echtzeit-Quantifizierung, Bindungskinetik und schnelle Screening-Assays
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.