Zu viel ist zu viel
Stammzellfaktor Nanog bremst sich selbst
Das Protein Nanog* ist jedem Stammzellforscher ein Begriff, denn es sorgt dafür, dass sich diese Alleskönner immer wieder erneuern. Kontrovers diskutiert wurde bis jetzt, wie die Menge an Nanog in der Zelle kontrolliert wird. „Bisher galt oft das Dogma, dass Nanog sich selbst aktiviert, um die Pluripotenz in embryonalen Stammzellen aufrecht zu erhalten“, erklärt Dr. Carsten Marr. Er leitet die Arbeitsgruppe Quantitative Single Cell Dynamics am Institute of Computational Biology (ICB) des Helmholtz Zentrums München. Zusammen mit Kollegen der ETH Zürich haben er und sein Team einen Algorithmus namens STILT (Stochastic Inference on Lineage Trees) entwickelt, der diese Annahme nun widerlegt.
Mit STILT werteten die Wissenschaftler (bereits 2015 erhobene) zeitaufgelöste Proteinexpressionsdaten von einzelnen Zellen aus, in denen sich Nanog durch Fusion mit einem Fluoreszenzprotein nachweisen ließ. „Die so gemessene Dynamik von Nanog haben wir mit drei verschiedenen Modellen verglichen. Die Herausforderung war dabei zum einen der quantitative Vergleich der Modelle, zum anderen die Berücksichtigung von Zellteilungen der Stammzellen im Algorithmus “, so Erstautor Justin Feigelman, der als Postdoc vom Helmholtz Zentrum München an die ETH Zürich gewechselt war. „Die Ergebnisse zeigen für Nanog einen sogenannten negativen Feedback-Loop: Das bedeutet je mehr Nanog in den Zellen vorhanden ist, desto weniger wird nachproduziert.“
Aus dem Rechner in die Petrischale übertragbar
Um diese Ergebnisse zu überprüfen, berechneten die Wissenschaftler, was passieren würde, wenn sie die Produktion von Nanog in der Petrischale künstlich erhöhen würden. „Tatsächlich konnten wir die von STILT erhobene Hypothese anschließend in einem Zellkultur-Experiment mit erhöhtem Nanog bestätigen“, erklärt Studienleiter Marr.
Durch ihre Forschung versprechen sich die Wissenschaftler ein besseres Verständnis für die Erneuerung von Stammzellen und hoffen diese dadurch in Zukunft gezielter für medizinische Anwendungen nutzbar machen zu können. „Zudem werden wir STILT in Zukunft auch auf andere zeitaufgelöste Einzelzell-Daten anwenden und dadurch Einsichten in die zugrundeliegenden molekularen Genregulations-Mechanismen erhalten“, erklärt Marr.
Originalveröffentlichung
Originalveröffentlichung
Justin Feigelman, Stefan Ganscha, Simon Hastreiter, Michael Schwarzfischer, Adam Filipczyk, Timm Schroeder, Fabian J. Theis, Carsten Marr, Manfred Claassen; "Exact Bayesian lineage tree-based inference identifies Nanog negative autoregulation in mouse embryonic stem cells"; Cell Systems; 2016
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.