Zellulären Sortierprozessen auf der Spur
Andreas Walther, Universität Freiburg
Der Forschungserfolg lässt sich anhand von Legosteinen erklären: Man nehme einen Haufen Legosteine, von denen jeder Stein entweder blau, rot, grün oder gelb ist. Wer es sich nun einfach machen möchte, baut diese Legosteine ohne Berücksichtigung der vier Farben zusammen, sodass ein buntes Gebilde entsteht. Ein wenig größer ist der Aufwand, wenn man die Legosteine zunächst nach den vier Farben sortiert, sodass nur komplett blaue, rote, grüne oder gelbe Objekte entstehen. Läuft dieser Prozess selbstständig an, nennt man ihn ‚unsoziale‘ Assemblierung. Eine weitere, etwas komplexere Aufgabe ist, aus der bunten Mischung an Legosteinen nur Objekte mit roten und blauen Steinen und Objekte mit grünen und gelben Steinen zu bauen. Laufen beide Prozesse gleichzeitig und selbstständig ab, so spricht man von einer ‚sozialen‘ Assemblierung.
Eine ähnliche Aufgabe hatten sich die Wissenschaftler aus Aachen und Freiburg gestellt, allerdings nutzen sie winzige Gelpartikel, sogenannten Mikrogele, statt der handlichen Legosteine. Mikrogele sind besonders wasserreiche, schwammartige Gelpartikel, die sich chemisch modifizieren lassen. „Wir haben vier verschiedenen Arten von Mikrogelen hergestellt, die sich selbstständig sortieren und zusammenfügen können. Dabei können sich die Mikrogel-Typen sowohl zu ‚unsozialen‘ Gruppen zusammenfügen, also unter ihresgleichen bleiben, oder sich ‚sozial‘ sortieren, also sich gemeinsam mit einem zweiten Mikrogel-Typ zusammenfügen“, erklärt Dr. Alexander Kühne vom DWI. Er leitete das Forschungsprojekt gemeinsam mit Prof. Dr. Andreas Walther, der im Herbst 2016 vom DWI an die Universität Freiburg wechselte.
Die Schwierigkeit lag für die Wissenschaftler darin, dass die Mikrogele zwischen falschen und richtigen Partnern unterscheiden müssen. Um das zu erreichen, bauten die Wissenschaftler molekulare Interaktionen in die Mikrogele ein, sodass manche Mikrogele nun miteinander interagieren können und andere wiederum nicht. Das funktioniert wie ein Schlüssel, der nur in ein bestimmtes Schloss passt. Statt Schlüssel und Schloss verwendeten die Wissenschaftler schaltbare Moleküle, die sich in zyklische Zuckermoleküle einlagern. Mit einer Veränderung der Lichtbestrahlung oder durch bestimmte chemische Reaktionen können die Forscher die Form der schaltbaren Moleküle während des laufenden Experiments verändern. Auf diese Weise können die Mikrogele sich sortieren und auf Knopfdruck wieder auseinanderdriften und sich durchmischen.
„Wir möchten mit unseren Versuchen natürliche Vorgänge in Zellen besser verstehen“, so Kühne. „Gleichzeitig helfen uns Fortschritte auf diesem Gebiet bei der Entwicklung biologisch inspirierter, interaktiver Materialien.“
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.