Chemische Speichereinheiten
Oszillierende chemische Reaktionen können durch Licht erzeugte Muster konservieren
Oszillierende chemische Reaktionen laufen jenseits des thermodynamischen Gleichgewichts ab. Am besten untersucht sind die Belousov-Zhabotinsky-Reaktionen (BZ). Dabei wird z.B. eine Dicarbonsäure durch Bromat in saurer Lösung oxidiert. Als oszillierender Katalysator dient ein Redoxsystem, dessen oxidierte und reduzierte Form sich um eine Oxidationsstufe und in der Farbe unterscheiden. Deren periodische Schwankungen lassen sich am parallel dazu oszillierenden Farbwechsel der Reaktionslösung verfolgen.
Laufen oszillierende Reaktionen zwischen Reaktionspartnern ab, die erst durch Diffusion miteinander in Kontakt kommen, so spricht man von Reaktions-Diffusions-Systemen. Dabei treten die beiden unterschiedlichen Farben des Redoxsystems in charakteristischen Mustern auf, den sogenannten Turing-Mustern.
I. R. Epstein und seinen Mitarbeitern gelang es jetzt, aufbauend auf einer photosensitiven BZ Reaktion eine chemische Speichereinheit zu entwickeln. Sie stellten eine Wasser-in-Öl Mikroemulsion eines BZ-Systems her, in dem eine Ruthenium-Bipyridinverbindung als Katalysator diente. Wie zu erwarten bildeten sich im Dunkeln zunächst die üblichen Turing-Muster. Intensive Beleuchtung führte zur Entstehung von Bromid, das die Reaktion hemmte, die Muster verschwanden. Wurde die Lichtstärke langsam erhöht, veränderten sich die Muster zunächst kaum bis sie bei einer kritischen Intensität (Isc) plötzlich verschwanden. Eine erneute Verminderung der Lichtstärke bewirkte, dass die Muster bei einer Intensität (Ic) unterhalb der kritischen Intensität spontan wieder auftraten. Im Intervall zwischen Ic und Isc befand sich das System in einem Fließgleichgewicht, in dem keine neuen Muster entstehen konnten und bereits vorhandene Muster sich nicht mehr veränderten. Wurde die Reaktionslösung durch eine Schablone hindurch belichtet, so entstand ein Abbild der Schablone auf der Oberfläche der Mikroemulsion: unbelichtete Stellen zeigten die Turing-Muster, belichtete nicht. Dieses Bild blieb im Fließgleichgewicht über mehr als eine Stunde erhalten.
Würde man die verbrauchten Reaktionspartner der BZ Reaktion kontinuierlich ergänzen, so ließe sich das Bild beliebig lange speichern. Über eine erneute Belichtung könnte man das alte Bild löschen und mit einem neuen Bild überschreiben. Damit sind nach Meinung der Autoren grundlegende Bedingungen zur Herstellung chemischer Speichermodule erfüllt.
Orignialveröffentlichung: I. R. Epstein et al.; "A Reaction-Diffusion Memory Device"; Angewandte Chemie 2006, 118, No. 19, 3159-3161.
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

Kristalluntersuchung in 3D - Photonen-Energie als dritte Dimension der kristallographischen Texturanalyse

Morsezeichen aus der Zelle

Sortiermaschine für Atome
Molekularer Zweifarbendruck - Nanopipette mit zwei Kammern erzeugt Mikrostrukturen aus Biomolekülen
