Kurz vorm Schmelzen
Die Messung demonstriert das hohe Potential der so genannten Anrege-Abfrage-Technik bei der zeitlichen Auflösung ultraschneller Vorgänge. Bei diesem Verfahren wird zunächst mit einem ultrakurzen Lichtpuls ein atomarer Prozess in dem Material in Gang gesetzt. Die sich daraus ergebenden Veränderungen werden mit Hilfe weiterer Lichtpulse ermittelt, die im Abstand von fest definierten Zeitverzögerungen auf das Objekt treffen.
In vorliegenden Experiment wurde ein 50 Nanometer dicker Film des Halbmetalls Wismut mit 70 Femtosekunden langen Lichtpulsen aus einem Titan-Saphir-Laser (Nahes Infrarot) in einen hochangeregten Zustand gebracht. Da die Laserenergie nicht ausreicht, um den Stoff zum Schmelzen zu bringen, kehren die Atome in weniger als einer Nanosekunde (ein Milliardstel einer Sekunde) in ihren Normalzustand zurück. Wie sich die Festkörperstruktur im Anschluss an die Anregung verändert, untersuchten die Forscher um David Fritz (SLAC), indem sie den Film mit Pulsen aus der (mittlerweile abgebauten) Sub-Picosecond Pulse Source (SPPS) am SLAC bombardierten.
Um die Vorgänge genau zeitlich rekonstruieren zu können, müssen die Wissenschaftler genau wissen, wann die anregenden Lichtpulse bzw. die Röntgenpulse auf das Material treffen. Das Problem dabei ist, dass zwar die Pulse des Infrarot-Lasers in genau und verlässlich definierten Zeitintervallen kommen, sich die Pulse der Röntgenstrahlen aus einem Linear-Beschleuniger aber nicht so gut steuern lassen. Mit Hilfe eines elektrooptischen Kristalls schafften es die beiden MPQ-Forscher, Dr. Reinhard Kienberger und Dr. Adrian Cavalieri, eine Art Stoppuhr zu entwickeln, mit der die relativen Ankunftszeiten der Pulse mit der erforderlichen Genauig-keit bestimmt werden konnten.
Sogleich beim Auftreffen des anregenden Laserpulses werden die Bindungen zwischen den Atomen im Festkörper schwächer. Der Atomkern gerät dadurch aus dem Gleichgewicht, so wie eine Murmel, die vom Boden einer Vertiefung auf die geneigten Wände angehoben wird. Losgelassen (also im Anschluss an den Laserpuls) rollt der Kern wieder in die Mitte der Vertiefung zurück, und bevor er sich dort - im Gleichgewichtszustand - niederlässt, vollführt er kleinste Schwingungen um den Tiefpunkt. Mit Hilfe der oben skizzierten Anrege-Abfrage-Technik bestimmten die Forscher die Frequenz dieser Schwingungen. Daraus konnten sie die Kräfte ermitteln, die die Atome zusammenhalten, und zwar in Abhängigkeit von der seit der Anregung verstrichenen Zeit. Damit lässt sich erstmal eine zeitabhängige "Karte" der Potentialfläche des Festkörpers (aus der die inneratomaren Kräfte hervorgehen) rekonstruieren. Die Ergebnisse, die an diesem aus der Balance geratenen Wismut-Film gewonnen wurden, lassen sich überraschenderweise - mit nur geringfügigen Abänderungen - mit einem theoretische Modell erklären, das gewöhnlich Potentialflächen von Systemen im Gleichgewichtszustand beschreibt.
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.