Proteinforschung in kleinsten Dimensionen dank neuer Biochip-Technologie
Das Experimentieren mit den empfindlichen Proteinmolekülen ist mit zwei grundsätzlichen Schwierigkeiten verbunden: Erstens muss ihre Funktion auch in der künstlichen Umgebung des Laborexperiments ähnlich sein wie in der Zelle (es müssen physiologische Bedingungen herrschen). Zweitens gilt es, das zu untersuchende Protein in ausreichenden Mengen für eine Analyse zu isolieren. Beide Bedingungen erfüllt ein nanoskaliger Biochip, den Forscher vom Institut für Biochemie an der Universität Frankfurt gemeinsam mit Kollegen des Max-Planck-Institutes für Biochemie in Martinsried entwickelten. Er ermöglicht schnell durchführbare Funktionstests mit verschiedenen Kontrollproteinen und geringen Analytmengen.
Mit Hilfe des Rasterkraftmikroskops ist es den Forschern gelungen, Proteine im Nanometermaßstab auf einem Chip anzuordnen. Die so genannte native Protein-Nanolithographie (NPNL) erlaubt es zum ersten Mal, Proteinarrays (Anordnungen auf einer Fläche) unter physiologischen Bedingungen herzustellen, wie sie auch in der Zelle herrschen. Da auf diese Weise die Funktionalität der Biomoleküle erhalten bleibt, kann man nun auch mit empfindlichen Proteinen und sogar ganzen Proteinkomplexen experimentieren.
Die Wissenschaftler um Prof. Robert Tampé an der Universität Frankfurt setzten das Rasterkraftmikroskop in einem besonderen Schwingungszustand (Kontaktoszillationsmodus) ein, der es erlaubt, auf Chipoberflächen plazierte Proteine zu entfernen und durch andere Proteine mithiulfe von Selbstorganisationsprozessen zu ersetzen. Mit dieser Technologie wird eine schonende Prozessierung von Chipoberflächen ermöglicht. In Analogie zur Formatierung von wiederbeschreibbaren Datenträgern wie Computerfestplatten oder CD-ROMs können die geschriebenen Nanostrukturen aus Proteinen wieder gelöscht und neu beschrieben werden. Diese Wiederbeschreibbarkeit der Proteinarrays befähigt zur Fabrikation von komplexen Protein-Anordnungen, bestehend aus unterschiedlichen Spezies und Biofunktionalitäten, auf Oberflächen.
Die derzeitige Auflösungsgrenze für die Herstellung dieser Arrays liegt bei 50 Nanometern, die bereits schon nahe an der Größe der Proteine liegt. Eine Erhöhung der Komplexität und gleichzeitig weitere Verkleinerung der Nanostrukturen ist das nächste Ziel der Frankfurter Biochemiker. Nanokatalytische Zentren mit biologischer Aktivität und synthetische Maschinen werden die Anwendungsfelder der Nanobiotechnologie als Forschungs- und Fabrikationswerkzeug ausdehnen. Eine Vision ist die Herstellung von bioaktiven Sensoren mit Einzelmolekülempfindlichkeit.
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Kjel- / Dist Line von Büchi
Kjel- und Dist Line - Wasserdampfdestillation und Kjeldahl-Anwendungen
Maximale Genauigkeit und Leistung für Wasserdampfdestillation und Kjeldahl-Anwendungen
AZURA Purifier + LH 2.1 von KNAUER
Präparative Flüssigkeitschromatografie - Neue Plattform für mehr Durchsatz
Damit sparen Sie Zeit und verbessern die Reproduzierbarkeit beim Aufreinigen
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.