Der Staubsauger des Botenstoffs Histamin: Vesikulärer Monoamintransporter erstmals in Stützzellen nachgewiesen
Wohin wandert der Botenstoff nach "Gebrauch"?
Nervenzellen kommunizieren miteinander, indem sie Botenstoffe ausschütten, die von anderen Nervenzellen erkannt werden. Die Kommunikation geschieht an speziellen Verbindungsstellen, den Synapsen. Eine bedeutende Botenstofffamilie sind die Monoamine Dopamin, Serotonin und Histamin. Bestimmte Transporterproteine, die vesikulären Monoamintransporter (VMATs), sorgen für die Speicherung der Stoffe in Nervenzellen. Nach "Gebrauch", also der Freisetzung des Histamins aus den Nervenzellen, kann es chemisch verändert einem Recyclingprozess zugeführt werden. Für den Verbleib von freiem Histamin verliert sich allerdings die Spur: Wege der Wiederaufnahme von freiem Histamin, wie sie für andere Botenstoffe bekannt sind, hat man aber bisher nicht gefunden. Licht ins Dunkel brachten Untersuchungen von Biochemikern der RUB um Prof. Dr. Bernhard Hovemann (AG Molekulare Zellbiochemie) an den Augen der Fruchtfliege Drosophila.
Fliegenaugen brauchen einen ununterbrochenen Fluss von Histamin
Die Signalweiterleitung im Insektenauge ist ein ideales System um die Histaminfreisetzung und -wiederaufnahme zu untersuchen. Histamin ist der wichtigste Botenstoff, der von Photorezeptorzellen der Augen freigesetzt wird. Wie auch bei Säugetieren wird bei Fruchtfliegen das Histamin durch das Enzym Histidin Decarboxylase bereitgestellt. Bei der Taufliege wird es in der Nähe der Synapsen in Zellräumen der Nervenzellen (Vesikeln) gelagert. Das ständig ausgeschüttete Histamin wird nach chemischer Veränderung einem Recycling zugeführt: Wo immer freies Histamin entsteht, muss verhindert werden, dass es verloren geht und dem System nicht mehr zur Verfügung steht. Es ist aber bis heute nicht geklärt, wie das funktioniert.
Neuer Transporter ist unverzichtbar
Die Bochumer Wissenschaftler konnten nun nachweisen, dass bei den Fliegen eine bisher unbekannte Form des vesikulären Monoamintransporters in den Stützzellen des Nervensystems, der Glia, gebildet wird. Dieser Transporter sammelt freies Histamin wie ein Staubsauger wieder ein. Für die Aufrechterhaltung der Histaminkonzentration im Auge der Taufliege Drosophila stellte sich dieser Transporter mit dem Namen DVMAT-B als unerlässlich heraus. "Eine Mutation der Transporterfunktion führte zu einer deutlich reduzierten Histaminkonzentration in Fliegenköpfen", beschreibt Prof. Hovemann die Ergebnisse. Für die exakte Funktion von DVMAT-B bei der Aufrechterhaltung der Sehfunktion der Fliegen werden verschiedene Modellvorstellungen diskutiert. Die überraschende Lokalisation des Transportes in Gliazellen und seine Rolle bei der Regulation der Histaminmenge bei der Fliege legt nahe, zu untersuchen, ob Säugetiere einen ähnlichen, neuen Mechanismus zur Speicherung von Histamin nutzen könnten.
Originalveröffentlichung: Rafael Romero-Calderón et al.; "A Glial Variant of the Vesicular Monoamine Transporter Is Required To Store Histamine in the Drosophila Visual System"; PLoS Genetics 2008, 4, 1-13
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.