Precisely controlling plastic particles
Physicists find unusual colloids
Lehrstuhl für Experimentalphysik V, Universität Bayreuth
Following in the footsteps of Nobel laureates
The colloids thus behave similarly to the electrons of topological insulators, a material class that has fascinated physicists for the past couple of years. Topological insulators are characterized by their ability to conduct electrical current at the material periphery but prevent electrical current from entering their interior. It was British physicists David Thouless, Duncan Haldane, and Michael Kosterlitz who received the Nobel Prize in Physics in 2016 for the important contributions they made to the investigation of such solids by way of their theoretical calculations. Since then, there has been increased interest in large particles which have properties similar to those of the much smaller electrons in topological insulators and which are analogous to them.
The Bayreuth physicists have now succeeded in identifying such particles for the first time. They are colloids which keep their position when placed in the interior of a complex material. However, they are able to crawl along the edge of this material, where they move forward in a looping pattern. To date, no other particles are known to be similar to the electrons of topological insulators in this way.
Future chips as miniature laboratories
The unusual behaviour of these colloids in and on a complex material is due to the structured magnetic field to which they are exposed. As a result of this magnetic field, not only can the movement of the colloids be observed without interruption, they can also be precisely controlled.
In exactly this context, there is promising potential for future applications in research and development: “Individual molecules can be placed on the colloids, for example in the scope of biomedical examinations, and these individual molecules can be precisely transported from one position to a different target by “piggybaciking”. The colloids are thus well-suited for producing microchips on which these processes can be precisely controlled and observed. These chips would then be miniature laboratories for a diverse range of experiments that rely on this type of precise control,” explained Dr. Daniel de las Heras, who is carrying out the research in Bayreuth together with Dr. Johannes Löhr.
Original publication
Other news from the department science
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.