Sharper than ever: Physicists make molecular vibrations more detectable
The new method will improve the understanding of interactions in molecular systems and to further develop simulation methods
© Jan Homberg
The discovery by Dr. Jan Homberg, Dr. Alexander Weismann and Prof. Dr. Richard Berndt from the Institute of Experimental and Applied Physics, relies on a special quantum mechanical effect, the so-called inelastic tunnelling. Electrons that pass through a molecule on their way from a metal tip to the substrate surface in the scanning tunnelling microscope can release energy to the molecule or take it up from it. This energy exchange occurs in portions determined by the properties of the respective molecule.
Normally, this energy transfer happens only rarely and is therefore difficult to measure. In order to amplify the measurement signal and simultaneously achieve a high frequency resolution, the team of the CAU used a special property of molecules on superconductors they had previously discovered: suitably arranged, the molecules show a state in the spectra that appears needle-shaped, very high and extremely sharp -- the so-called Yu-Shiba-Rusinov resonance. The experiments were supported by theoretical work of Troels Markussen from the software company Synopsis in Copenhagen.
Original publication
Other news from the department science
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.