Speeding up diagnostics! Entangled photon pairs to help fighting cancer
Significantly reduced measurement times and enhanced reliability in cancer diagnostics
FBH/P. Immerz
Cancer is the second leading cause of death and the most feared disease in aging Western societies, representing the greatest challenge to modern medicine. Since cancer cannot be prevented, early and differentiated detection is extremely important for rapid intervention and cure.
One important challenge in clinical cancer diagnostics is the need for rapid analysis of patient tissue sections. This can be addressed by shortening the preparation time due to the large number of sections to be examined, preferably without the need for staining ("label‐free"), combined with a short measurement time to allow detecting tumor cells with highest reliability. Under laboratory conditions, midinfrared radiation (MIR) has already been successfully used for this purpose, but current measurement times are far too long for rapid diagnostics, so that validation and regular use in hospitals is not possible today. Transferring the MIR approach to clinical diagnostics is an open challenge: MIR light still poses high technical requirements both for its generation and for its detection application.
In the new Quantum‐Enhanced Early Diagnostics project (QEED), funded by the German Federal Ministry of Education and Research within the program quantum technologies – from basic research to market, ten partners from research and industry combine their expertise in this novel approach to quickly detect and fight cancer. Scientists from the Berlin-based Ferdinand-Braun-Institut (FBH) will realize the required high-power diode laser sources emitting at 1170 nm and 720 nm in a Master Oscillator Power Amplifier (MOPA) configuration. The MOPAs will then be integrated into an inhouse developed novel technology platform. These quantum light modules will finally be assembled jointly with components from the project partners by FBH’s Prototype Engineering Lab into the QEED system.
Significantly reduced measurement times and enhanced reliability
The project aims to transfer measurement information from the clinically relevant mid‐infrared (MIR) to the well‐detectable near‐infrared (NIR) spectral range by developing a novel spectrally resolved imaging technique relying on entangled photon pairs. Based on quantum sensor technology, the QEED microscopy method will enable label‐free examination of tissue samples and is expected to reduce the measurement time for a 10‐megapixel image to just two minutes. Simple preparation combined with fast measurement enables high sample throughput and thus, for the first time, integration into clinical workflows. Patients will benefit from this development, as biopsy samples will be able to be diagnosed more quickly and reliably in the future. In addition, this approach will help to minimize the proportion of false‐negative and false‐positive results, which according to Deutsches Krebsforschungszentrum are associated with high levels of psychological distress, and thus increase the willingness of patients to take advantage of screening.
On the basis of innovative ultra‐bright photon pair sources and their adapted measurement and analysis, different demonstrators are planned – for scientific (biomedical) research and with an integrated fluorescence unit for automated pathology in clinical routine. In addition, all novel modules for the QEED system will be further developed as independent components to create stand‐alone products.
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Diagnostics
Diagnostics is at the heart of modern medicine and forms a crucial interface between research and patient care in the biotech and pharmaceutical industries. It not only enables early detection and monitoring of disease, but also plays a central role in individualized medicine by enabling targeted therapies based on an individual's genetic and molecular signature.
Topic world Diagnostics
Diagnostics is at the heart of modern medicine and forms a crucial interface between research and patient care in the biotech and pharmaceutical industries. It not only enables early detection and monitoring of disease, but also plays a central role in individualized medicine by enabling targeted therapies based on an individual's genetic and molecular signature.