Significant Breakthrough in Understanding of the Two-State Reactivity Mechanism
Scientists discovered first experimental methodology for measuring low-energy, spin-forbidden transitions in molecular catalysts
Specifically, iron(IV)-oxo complex are highly reactive intermediates involved in various oxidation reactions, such as the conversion of methane to methanol. The iron(IV)-oxo catalysts are known to have either S = 2 or S = 1 spin-states, with the S = 2 spin-states having been shown to generally be more reactive. A long-standing theory known as the two-state reactivity model suggests that the catalysts with an S = 1 ground state can switch between different spin states to drive reactions. A component of this theory is that the energy separation between these two spin-states, should be correlated with oxidative reactivity. A large challenge in probing this mechanism has been that the energy difference between these spin states had never been measured experimentally. The difficulty of measuring this excitation energy is two-fold: the transitions between these states are spin-forbidden leading to low intensity, and they are expected to be low-energy placing them outside the range of standard spectroscopic techniques.
Researchers at the Max Planck Institute for Chemical Energy Conversion and MPI für Kohlenforschung have made a significant breakthrough in understanding of the two-state reactivity mechanism. Using a combination of advanced spectroscopic techniques: resonant inelastic X-ray scattering (collected at the PEAXIS beamline at the BESSY II Helmholtz-Zentrum Berlin für Materialien und Energie) and magnetic circular dichroism, the researchers were able to directly measure the elusive triplet-quintet excitation energy in these complexes.
The implications of this research are significant: With experimental measurements of this crucial excitation, scientists can now refine their theoretical models allowing for the design of more efficient and selective catalysts. This work also demonstrates, to their knowledge, the first experimental methodology for measuring low-energy, spin-forbidden transitions in molecular catalysts.
Original publication
Most read news
Original publication
Derek B. Rice, Deniz Wong, Thomas Weyhermüller, Frank Neese, Serena DeBeer; "The spin-forbidden transition in iron(IV)-oxo catalysts relevant to two-state reactivity"; Science Advances, Volume 10
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.