AI helps to detect antibiotic resistance
This is an important first step toward integrating GPT-4 into clinical diagnostics
UZH
The researchers used AI to interpret a common laboratory test known as the Kirby-Bauer disk diffusion test, which helps doctors to determine which antibiotics can or can’t fight a particular bacterial infection. Based on GPT-4, the scientists created the “EUCAST-GPT-expert”, which follows strict EUCAST (European Committee on Antimicrobial Susceptibility Testing) guidelines for interpreting antimicrobial resistance mechanisms. By incorporating the latest data and expert rules, the system was tested on hundreds of bacterial isolates, helping to identify resistance to life-saving antibiotics.
Human experts are more accurate – but AI is faster
“Antibiotic resistance is a growing threat worldwide, and we urgently need faster, more reliable tools to detect it,” says Adrian Egli, who led the study. “Our research is the first step toward using AI in routine diagnostics to help doctors identify resistant bacteria more quickly.”
The AI system performed well in detecting certain types of resistance, but it wasn’t perfect. While it was good at spotting bacteria resistant to certain antibiotics, it sometimes flagged bacteria as resistant when they were not, leading to possible delays in treatment. In comparison, human experts were more accurate in determining resistance, but the AI system could still help standardize and speed up the diagnostic process.
Useful tool to support medical staff
Despite the limitations, the study highlights the transformative potential of AI in healthcare. By offering a standardized approach to the interpretation of complex diagnostic tests, AI could eventually help reduce the variability and subjectivity that exists in manual readings, improving patient outcomes.
Adrian Egli emphasizes that more testing and improvements are needed before this AI tool can be used in hospitals. “Our study is an important first step, but we are far from replacing human expertise. Instead, we see AI as a complementary tool that can support microbiologists in their work,” he says.
Curbing the global development of antibiotic resistance
According to the study, AI has the potential to support the global response to antibiotic resistance development. With further development, AI-based diagnostics could help laboratories worldwide improve the speed and accuracy of detecting drug-resistant infections, helping to preserve the effectiveness of existing antibiotics.
Original publication
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Digitalization in the laboratory
The topic world Digitalization in the lab presents innovations and trends from digital data systems (ELN, LIMS) to laboratory robots and networked devices (IoT) to AI and machine learning.
Topic world Digitalization in the laboratory
The topic world Digitalization in the lab presents innovations and trends from digital data systems (ELN, LIMS) to laboratory robots and networked devices (IoT) to AI and machine learning.