Entering the field of zeptosecond measurement
M. Ossiander (TUM) / M. Schultz (MPQ)
If light hits the two electrons of a helium atom, one must be incredibly fast to observe what occurs. Besides the ultra-short periods in which changes take place, quantum mechanics also comes into play. Laser physicists at the Max Planck Institute of Quantum Optics (MPQ), the Technical University of Munich (TUM) and the Ludwig Maximilians University (LMU) Munich have now measured such an event for the first time with zeptosecond precision.
Either the entire energy of a light particle (photon) can be absorbed by one of the electrons or a division can take place, if a photon hits the two electrons of a helium atom. Regardless of the energy transfer, one electron leaves the atom. This process is called photoemission, or photoelectric effect, and was explained by Albert Einstein at the beginning of last century.
It takes between five and fifteen attoseconds (1 as is 10^-18 second) from the time a photon interacts with the electrons to the time one of the electrons leaves the atom, as physicists already discovered in recent years.
First glance into the world of Zeptoseconds
With their improved measurement method, laser physicists can accurately measure events at a rate of up to 850 zeptoseconds. The researchers shone an attosecond-long, extremely ultraviolet (XUV) light pulse onto a helium atom to excite the electrons.
At the same time, they fired a second infrared laser pulse, lasting about four femtoseconds (1 fs is 10^-15 seconds). The electron was detected by the infrared laser pulse as soon as it left the atom following excitation by XUV light.
Depending on the exact electromagnetic field of this pulse at the time of detection, the electron was accelerated or decelerated. Through this change in speed, the physicists were able to measure photoemission with zeptosecond precision.
In line with theoretical predictions
The researchers were also able to determine for the first time how the energy of the incident photon is quantum-mechanically divided between the two electrons of the helium atom in a few attoseconds before the emission of one of the particles.
"With the measurement of the electronic correlation, our experiments solved a promise of attosecond physics, namely the temporal resolution of a process which is inaccessible with other methods," says Reinhard Kienberger, professor of the Chair of Laser- and X-Ray Physics at TU Munich.
The physicists were also able to correlate the zeptosecond precision of their experiments with the theoretical predictions of their peers from the Institute of Theoretical Physics at the Technical University of Vienna.
With its two electrons, helium is the only multi electron system that can be calculated completely quantum mechanically. This makes it possible to reconcile theory and experiment. "We can now derive the complete wave mechanic description of the interconnected systems of electron and ionized helium mother atoms from our measurements," says Martin Schultze, project leader at the Max Planck Institute of Quantum Optics in Garching (Germany).
With their metrology experiments in zeptosecond time dimensions, the laser physicists have maneuvered another important puzzle piece in the quantum mechanics of the helium atom into position, and thus advanced measuring accuracy in the microcosm to a whole new dimension.
Original publication
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.