3D-Tomographien zeigen, wie Lithium-Akkus altern
M. Osenberg / I. Manke / HZB
Ob in der Elektromobilität, in der Robotik oder der IT – Lithium-Akkus werden einfach überall eingesetzt. Trotz jahrzehntelanger Optimierung lässt sich bisher jedoch nicht verhindern, dass solche Akkus „altern“. Mit jedem Ladungszyklus geht Kapazität verloren. Grob sind die Prozesse bekannt, die dazu führen. Doch erst jetzt hat ein internationales Team unter Federführung von HZB-Forschern um Dr. Ingo Manke mit mikroskopischer Genauigkeit beobachtet, was im Inneren des Akkus an den Grenzflächen zwischen den Elektroden genau geschieht, wenn die Lithium-Ionen wandern.
Lithium-Zellen beim Aufladen und Entladen untersucht
Manke ist Experte für 3D-Tomographie mit Synchrotronstrahlung, einem besonders intensiven Röntgenlicht. Mit dieser zerstörungsfreien, bildgebenden Methode lassen sich 3D-Abbildungen aus dem Inneren von Proben erstellen. An BESSY II steht diese Methode mit besonders hoher Präzision an der Beamline der Bundesanstalt für Materialforschung und –prüfung (BAM) zur Verfügung. Mankes Team untersuchte eine Reihe von unterschiedlichen Lithium-Zellen während der Aufladung und Entladung (operando = während des Betriebs) unter verschiedenen Zyklusbedingungen. Bei allen untersuchten Zellen bestand eine Elektrodenseite aus reinem Lithium, während die andere Seite je nach Wahl aus unterschiedlichen Elektroden-Materialien bestand. Ein Teil der Untersuchung fand dabei auch am Helmholtz-Zentrum Geesthacht statt.
Bildung von MIkrostrukturen
Die Tomographien zeigen, wie sich bereits nach wenigen Lade-Entlade-Zyklen eine Schicht aus Mikrostrukturen zwischen der Separatorschicht und der Lithium-Elektrode bildet. Diese Mikrostrukturen bestehen aus Reaktionsverbindungen, die sich im Elektrolyten bilden. Sie können unterschiedliche Gestalt annehmen, von einem eher ungeordneten Schlamm über moosartige Strukturen bis hin zu nadelförmigen Dendriten, die sogar gefährliche Kurzschlüsse im Akku verursachen können.
„Damit haben wir erstmals ein vollständiges Bild des Degradationsmechanismus in Lithium-Elektroden“, sagt Ingo Manke. Dies ist nicht nur für das grundlegende Verständnis von Alterungsprozessen in Batterien interessant, sondern liefert insbesondere auch wertvolle Hinweise für das Design von langlebigeren Batterien.
Originalveröffentlichung
Fu Sun, Xin He, Xiaoyu Jiang, Markus Osenberg, Jie Li, Dong Zhou, Kang Dong, André Hilger, Xiaoming Zhu, Rui Gao, Xiangfeng Liu, Kai Huang, De Ning, Henning Markötter, Li Zhang, Fabian Wilde, Yuliang Cao, Martin Winter, Ingo Manke; "Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography"; Materials Today; 2018
Originalveröffentlichung
Fu Sun, Xin He, Xiaoyu Jiang, Markus Osenberg, Jie Li, Dong Zhou, Kang Dong, André Hilger, Xiaoming Zhu, Rui Gao, Xiangfeng Liu, Kai Huang, De Ning, Henning Markötter, Li Zhang, Fabian Wilde, Yuliang Cao, Martin Winter, Ingo Manke; "Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography"; Materials Today; 2018
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.