Rastertunnelmikroskop zeigt Magnetismus in atomarer Auflösung
Sensor-Molekül an der Spitze macht magnetische Momente in beispielloser räumlicher Auflösung sichtbar
Copyright: Forschungszentrum Jülich / Markus Ternes
Um die Welt der einzelnen Atome und Moleküle zu erforschen, verwenden Wissenschaftler standardmäßig Mikroskope, die nicht mit Licht- oder Elektronenstrahlen arbeiten, sondern eher wie ein hochempfindlicher Plattenspieler funktionieren. Die Geräte, die auch als Rastersondenmikroskope bezeichnet werden, verfügen über eine scharfe Nadel, mit deren Ende sie die Oberfläche einer Probe abtasten, um die Erhebungen und Vertiefungen zwischen einzelnen Atomen und Molekülen zu erfassen. Der Abstand zwischen Mikroskop-Spitze und Probenoberfläche lässt sich dabei über einen winzigen elektrischen Strom steuern, der zu fließen beginnt, sobald sich beide Seiten bis auf den Bruchteil eines Nanometers – also eines Millionstel Millimeters – annähern.
Die Grundidee solcher Mikroskope stammt bereits aus den 1980er Jahren. Doch in den letzten zehn Jahren gelang es Wissenschaftlern in verschiedenen Labors weltweit, die Funktion der Geräte maßgeblich zu verbessern und zu erweitern, indem sie die Tastspitze der Mikroskope geschickt veränderten. So lässt sich etwa über die Anbindung eines kleinen Moleküls wie Kohlenmonoxid oder Wasserstoff an der Mikroskop-Spitze eine beispiellose Verbesserung der Auflösung erzielen, mit der dann sogar die Abbildung chemischer Bindungen möglich ist.
Einen ähnlichen Ansatz verfolgen auch die Autoren der jüngst in „Science“ erschienenen Publikation, um die Spitze des Mikroskops für magnetische Momente empfindlich zu machen. Sie platzierten dazu ein Molekül vor die Mikroskop-Spitze, einen sogenannten molekularen Quantenmagneten, der ein Nickelatom enthält. Dieses Molekül ist im Grundzustand praktisch unmagnetisch. Durch elektrische Anregung lässt es sich aber leicht in verschiedene magnetische Zustände versetzen, so dass es wie ein winziger Magnet wirkt, mit dem sich magnetische Momente in einer einzigartigen räumlichen Auflösung und Empfindlichkeit auf atomarer Skala abbilden lassen.
Die neue Methode bietet vielfältige Anwendungsmöglichkeiten. Die Technik ermöglicht es erstmals, die atomare Struktur von Oberflächen zusammen mit ihren magnetischen Eigenschaften zu erfassen. Das Verfahren ist zudem relativ einfach zu reproduzieren, sodass es ohne größere Schwierigkeiten von anderen Forschungsgruppen übernommen werden kann. So werden erstmals magnetische Momente in komplexen magnetischen Strukturen zugänglich, die bisher verborgen waren und die für das Verständnis der magnetischen Eigenschaften komplexer Materialien wichtig sind – beispielsweise für die Entwicklung neuartige Datenspeicher oder Quantensimulatoren. Und die Methode bringt noch einen weiteren Vorteil mit sich. Da der Grundzustand des angehefteten Moleküls nicht magnetisch ist, beeinflusst die Messung das zu untersuchende System nur minimal – das ist wichtig, um empfindliche Zustände im Nanobereich nicht zu zerstören.