Ionen und Rydberg-Atome: David bindet mit Goliath

Neuartigen Bindungstyp zwischen kleinen und sehr großen atomaren Teilchen nachgewiesen

20.05.2022 - Deutschland

Forscher der Universität Stuttgart haben einen neuartigen Bindungstyp nachgewiesen, der ein winziges geladenes Teilchen und ein nach atomaren Verhältnissen riesiges Rydbergatom zu einem Molekül verschmelzen lässt. Mithilfe eines selbst entwickelten Ionenmikroskops konnten sie dieses Molekül erstmals räumlich aufgelöst beobachten. Die Ergebnisse sind am 18. Mai 2022 in der Fachzeitschrift „Nature“ erschienen.

Nicolas Zuber, Universität Stuttgart

Vakuumkammer, die für die Versuche verwendet wurde.

Wenn einzelne Teilchen wie Atome und Ionen Bindungen miteinander eingehen, entstehen daraus Moleküle. Solche Bindungen entstehen zum Beispiel, wenn zwei Teilchen unterschiedlich elektrisch geladen sind und sie sich daher anziehen. Das Molekül, das die Forschenden der Universität Stuttgart beobachteten, weist dabei eine Besonderheit auf: Es besteht aus einem elektrisch positiv geladenen Ion und einem neutralen Atom, welches sich in einem sogenannten Rydbergzustand befindet. Ein solches Rydberg-Atom ist auf ein tausendfaches seiner üblichen Größe angewachsen. Die Anbindung wird möglich, weil die Ladung des Ions das neutrale Rydbergatom in einer ganz spezifischen Weise verformt.

Rubidiumwolke wird nahe an den absoluten Nullpunkt gekühlt

Zum Nachweis und der Untersuchung des Moleküls präparierten die Forschenden eine ultrakalte Atomwolke aus Rubidium, die sie bis nahe an den absoluten Nullpunkt von -273°C abkühlten. Nur bei diesen tiefen Temperaturen reicht die Kraft für eine Bindung. In solchen ultrakalten Wolken werden gezielt einzelne Atome mit Hilfe von Lasern ionisiert und so der erste Baustein des Moleküls – das Ion – präpariert. Weitere Laserstrahlen versetzen ein zweites Atom in den Rydbergzustand. Dieses Riesenatom wird durch das elektrische Feld des Ions verformt. Interessanterweise kann die Verformung je nach Abstand der beiden Teilchen sowohl anziehend als auch abstoßend sein, sodass die Bindungspartner um einen Gleichgewichtsabstand pendeln. Dieser Mechanismus bewirkt die Molekülbindung. Der Abstand zwischen den beiden Bindungspartnern ist ungewöhnlich groß und beträgt ungefähr ein Zehntel der Dicke eines menschlichen Haares.

Mikroskopie mit elektrischen Feldern

Möglich wurde die Beobachtung durch ein besonderes Ionenmikroskop, das die Forschungsgruppe am 5. Physikalischen Institut in enger Zusammenarbeit mit den Werkstätten der Universität Stuttgart selbst entwickelt, gebaut und in Betrieb genommen hat. Im Gegensatz zu üblichen Mikroskopen arbeitet dieses nicht mit Licht, sondern nutzt die Möglichkeit, geladene Teilchen durch elektrische Felder in ihren Bewegungen zu beeinflussen. Die Position der Teilchen kann damit vergrößert abgebildet werden. „Mit diesem Mikroskop konnten wir das frei fliegende Molekül und seine Bestandteile direkt beobachten und sehen, wie dieses sich in unserem Experiment ausrichtet“, erklärt Nicolas Zuber, Doktorand am 5. Physikalischen Institut, die Ergebnisse.

Im nächsten Schritt soll dieses ungewöhnliche Molekül dazu verwendet werden, um dynamische Prozesse innerhalb des Moleküls zu untersuchen. Dabei kommt auch hier das Ionenmikroskop zum Einsatz, um Rotationen oder auch Vibrationen des Moleküls zu untersuchen. Aufgrund der schieren Größe und schwachen Bindung des Moleküls, laufen diese Vorgänge sehr viel langsamer ab als in den sonst üblichen Molekülen. Die Forscher erhoffen sich auf diese Weise detailliertere Kenntnisse über die innere Struktur des Moleküls zu erlangen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Unter die Lupe genommen: Die Welt der Mikroskopie