Mikroskopietechnik ermöglicht 3D-Bildgebung mit Superauflösung im Nanometermaßstab
Forschungsteam kombiniert zwei Techniken, um isotropes Super-Resolution Imaging zu erreichen
Alexey Chizhik
Trotz enormer Verbesserungen in der Mikroskopie gibt es immer noch eine bemerkenswerte Lücke zwischen der Auflösung in allen drei Dimensionen. Eine der Methoden, diese Lücke zu schließen und eine Auflösung im Nanometerbereich zu erreichen, ist die metallinduzierte Energieübertragung (MIET). Die außergewöhnliche Tiefenauflösung der MIET-Bildgebung in Kombination mit der außergewöhnlichen lateralen Auflösung der Einzelmolekül-Lokalisierungsmikroskopie, insbesondere mit einer Methode namens direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM), ermöglicht den Forschenden eine isotrope dreidimensionale Superauflösung von subzellulären Strukturen. Darüber hinaus setzten sie Zweifarben-MIET-dSTORM ein, um zwei verschiedene zelluläre Strukturen dreidimensional abzubilden, zum Beispiel Mikrotubuli und Clathrin-beschichtete Pits – winzige Strukturen innerhalb von Zellen –, die zusammen im selben Bereich existieren.
„Durch die Kombination der etablierten Konzepte haben wir eine neue Technik für die Super-Resolution-Mikroskopie entwickelt. Ihr Hauptvorteil ist, dass sie trotz eines relativ einfachen Aufbaus eine extrem hohe Auflösung in drei Dimensionen ermöglicht“, sagt Erstautor Dr. Jan Christoph Thiele von der Universität Göttingen. „Dies wird ein leistungsfähiges Werkzeug mit zahlreichen Anwendungen sein, um Proteinkomplexe und kleine Organellen mit Sub-Nanometer-Genauigkeit aufzulösen. Jeder, der Zugang zu einem konfokalen Mikroskop mit einem schnellen Laserscanner und der Möglichkeit zur Messung der Fluoreszenzlebensdauer hat, sollte diese Technik ausprobieren“, so Mit-Autor Dr. Oleksii Nevskyi.
„Das Schöne an dieser Technik ist ihre Einfachheit. Das bedeutet, dass Forschende auf der ganzen Welt in der Lage sein werden, diese Technik schnell in ihre Mikroskope zu integrieren“, fügt Prof. Dr. Jörg Enderlein hinzu, der das Forschungsteam am Institut für Biophysik der Universität Göttingen leitete. „Diese Methode verspricht, ein leistungsfähiges Werkzeug für die multiplexe 3D-Superauflösungsmikroskopie mit außergewöhnlich hoher Auflösung und einer Vielzahl von Anwendungen in der Strukturbiologie zu werden.“
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.