Moleküle haben eine Orientierung, und Wissenschaftler haben eine neue Methode, diese zu messen
Molekulare Orientierung ist der Schlüssel zur Entwicklung besserer Materialien
Computer-generated image
Y.J. Lee/NIST
Wissenschaftler hatten bisher keine guten Möglichkeiten, die molekulare Ausrichtung in drei Dimensionen auf mikroskopischer Ebene zu messen, so dass sie im Dunkeln tappen, warum sich manche Materialien so verhalten, wie sie es tun. Jetzt haben Forscher des National Institute of Standards and Technology (NIST) die dreidimensionale Ausrichtung der molekularen Bausteine von Kunststoffen, der so genannten Polymere, gemessen und dabei Details bis zu einer Größe von 400 Nanometern, also Milliardstel Metern, beobachtet.
Die Messungen, die im Journal of the American Chemical Society beschrieben werden, zeigen, dass sich Polymerketten auf komplexe und unerwartete Weise verdrehen und wellen. Die neuen Messungen wurden mit einer verbesserten Version einer Technik namens "broadband coherent anti-Stokes Raman scattering" (BCARS) durchgeführt.
Bei BCARS wird ein Material mit Laserstrahlen beschossen, die seine Moleküle in Schwingung versetzen und ihr eigenes Licht aussenden. Diese Technik, die vor etwa einem Jahrzehnt am NIST entwickelt wurde, wird verwendet, um zu erkennen, woraus ein Material besteht. Um die molekulare Ausrichtung zu messen, hat der NIST-Forschungschemiker Young Jong Lee ein System zur Steuerung der Polarisation des Laserlichts und neue mathematische Methoden zur Interpretation des BCARS-Signals hinzugefügt.
Konkret misst die neue Technik die durchschnittliche Ausrichtung der Polymerketten innerhalb von 400-Nanometer-Regionen sowie die Verteilung der Ausrichtungen um diesen Durchschnitt herum. Diese Messungen werden es den Wissenschaftlern ermöglichen, die molekularen Orientierungsmuster zu identifizieren, die die gewünschten mechanischen, optischen und elektrischen Eigenschaften hervorbringen.
"Das Verständnis dieser Struktur-Funktions-Beziehung kann den Entdeckungsprozess wirklich beschleunigen", so Lee.
Dies wird den Forschern helfen, die Materialien zu optimieren, die in medizinischen Geräten wie Arterienstents und künstlichen Knien verwendet werden. Die Ausrichtung der Moleküle auf der Oberfläche dieser Geräte bestimmt, wie gut sie sich mit Muskeln, Knochen und anderen Geweben verbinden.
Sie kann auch bei der additiven Fertigung helfen, bei der Produkte durch 3D-Druck Schicht für Schicht hergestellt werden - eine Technik, die die Elektronik-, Automobil-, Luft- und Raumfahrtindustrie und andere Branchen verändert. Beim 3D-Druck werden häufig Polymere verwendet, und die Forscher sind ständig auf der Suche nach neuen Materialien mit besserer Festigkeit, Flexibilität, Hitzebeständigkeit und anderen Eigenschaften.
Die neue Messtechnik könnte auch zur Optimierung der ultradünnen Filme auf Polymerbasis eingesetzt werden, die bei der Halbleiterherstellung verwendet werden. Da die Komponenten in Computerchips immer kleiner werden - wie es das Mooresche Gesetz vorhersagt -, werden die molekularen Ausrichtungen in diesen Filmen immer wichtiger.
Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.