Massenspektrometrie-Verfahren vereinfacht Proteom-Forschung
Max-Planck-Forscher analysieren Proteine und andere Makromoleküle in noch nie dagewesener Flexibilität und Empfindlichkeit
© MPI f. molekulare Genetik
Mit der Massenspektrometrie kann die chemische Zusammensetzung von Substanzen analysiert werden. Die Moleküle werden dabei elektrisch geladen und in einem elektrischen Feld nach ihren Massen getrennt. Seit den 1990er Jahren wird die Technik auch zur Untersuchung von Proteinen eingesetzt. Der Vorteil: Die Wissenschaftler benötigen keine Antikörper wie beim klassischen Westernblot und sie können viele Proteine auf einmal, genauer und quantitativ analysieren.
Die Max-Planck-Wissenschaftler haben jetzt ein zuverlässiges und ein einfach zu handhabendes Verfahren entwickelt, um Proteine im Massenspektrometer zu analysieren ohne sie vorher reinigen zu müssen. Sie benutzen dazu einen besonders empfindlichen Triple-Quadrupol-Massenspektrometer, der an einen Hochdruck-Flüssigkeitschromatografen gekoppelt ist. „Mit unserem Verfahren können wir Protein-Mengen zwischen 500 und einer Million Moleküle pro Zelle quantifizieren – ein viel weiterer Bereich als beim traditionellen Westernblot. Die Proben müssen dafür nicht langwierig vorbereitet werden und wir müssen sie nicht mit teuren Isotopen markieren“, erklärt Markus Ralser vom Max-Planck-Institut für molekulare Genetik. Stattdessen nutzen die Wissenschaftler bereits bekannte Proteine der Zelle zur Eichung ihrer Methode. Deren Konzentration ist bekannt und dient als Referenz für die zu untersuchenden Proteine.
Dadurch ist die neue Methode einfacher und vielseitiger als andere Massenspektrometrie-Prozeduren. Um zwei Proben miteinander vergleichen zu können, müssen Forscher beispielsweise bei der so genannten SILAC-Methode diese mit schweren Stickstoff- oder Kohlenstoff-Atomen markieren, so genannten Isotopen. Durch den Massenunterschied können die Analyten im Massenspektrometer voneinander getrennt und die eventuell unterschiedliche Konzentration eines Proteins gemessen werden. Diese Isotopenmarkierung ist teuer und kann nur bei Zellen angewandt werden, für die entsprechende Referenzmaterialien zur Verfügung stehen. Die Zellen werden nämlich mit den Isotopen „gefüttert“ und nehmen sie über ihren normalen Stoffwechsel auf. Für die Zellen mancher Organismen ist das bislang überhaupt noch nicht möglich, oder mit sehr großen Kosten- und Zeitaufwand verbunden.
In Zukunft könnte die relative Proteinquantifizierung mittels Massenspektrometrie die klassischen Methoden der Proteinanalytik ersetzen. Denn bei einem Westernblot wird ein Proteinextrakt aufgetrennt, auf eine Membran übertragen und mittels eines Antikörpers nachgewiesen. Diese Antikörper müssen aufwändig hergestellt werden und sind deshalb ebenfalls teuer. Zudem werden in vielen Fällen Versuchstiere zur Herstellung der Antikörper verwendet. Zu den ethischen und wirtschaftlichen Schwierigkeiten kommen noch technische Einschränkungen dazu. So lassen sich nur für einen Teil der Proteine Antikörper herstellen, nicht jedes Protein kann deshalb mittels Westernblot untersucht werden. Außerdem können Westernblots Protein-Mengen nur schlecht quantifizieren. Zudem kann in der Regel nur ein Protein in einer Messung untersucht werden. Viele aktuelle Fragestellungen der heutigen Biologie können aber nur beantwortet werden, wenn mehrere Proteine gleichzeitig quantitativ wie bei der Massenspektrometrie untersucht werden.
Proteine haben eine Fülle von Aufgaben im Organismus: Sie wandeln beispielsweise Stoffwechselprodukte ineinander um und gewinnen dabei Energie, sie kopieren und reparieren die Erbsubstanz DNA, sie schreiben die DNA in RNA um und produzieren so neue Proteine. Die Gene stellen also die Blaupausen eines Organismus dar, die Proteine sind ihre Werkzeuge, mit denen ein Organismus aufgebaut wird. Wissenschaftler wollen deshalb den gesamten Protein-Bestand einer Zelle aufklären. „Wenn wir das Protein-Arsenal einer Zelle kennen, wissen wir möglicherweise noch genauer über ihre Funktionsweise Bescheid als mit den Informationen aus den Genen alleine“, sagt Markus Ralser. Auch die Ursachen von Krankheiten lassen sich so besser verstehen.
Originalveröffentlichung
Katharina Bluemlein and Markus Ralser; Next-generation SDS-PAGE/westernblots: Monitoring protein expression in whole-cell extracts by targeted label- and standard-free LC-MS/MS; Nature Protocols, 27. Mai 2011, online veröffentlicht