Gitter aus magnetischen Wirbeln
Forscher finden magnetische Skyrmionen in atomar dünnem Metallfilm
Vor ungefähr 50 Jahren fand der theoretische Physiker Tony Skyrme zu seiner Überraschung in quantenmechanischen Feldtheorien stabile und lokalisierte Konfigurationen, die miteinander wechselwirken und sich wie Atome auf einem Gitter anordnen können. Aufgrund dieser Eigenschaften identifizierte er diese wirbelartigen Lösungen als elementare Teilchen. Diese nach ihrem Entdecker benannten Skyrmionen zeigten sich später in vielen unterschiedlichen Gebieten der Physik und entwickelten sich so zu einem wichtigen Konzept. Das mögliche Auftreten von Skyrmionen in magnetischen Materialien wurde bereits vor 20 Jahren vorhergesagt und in Volumenmaterialien auch schon experimentell bestätigt.
Das in Hamburg entdeckte magnetische Skyrmionengitter tritt in einem atomar dünnen Film auf einer Oberfläche auf. Der Durchmesser der Wirbel beträgt nur wenige Atome und ist damit um mindestens eine Größenordnung kleiner als die bisher bekannten magnetischen Skyrmionen. Wie so oft spielte auch bei dieser Entdeckung der Zufall eine große Rolle. „Es ist zwar bekannt, dass Eisen unter Umständen auch ungewöhnliche magnetische Strukturen bilden kann, aber als wir die nahezu quadratische magnetische Struktur im Nanometer-Bereich gefunden haben, die sich eigentlich nicht mit der hexagonalen Anordnung der Eisenatome verträgt, war die Überraschung groß" sagt Dr. Kirsten von Bergmann aus der experimentellen Hamburger Forschungsgruppe von Professor Roland Wiesendanger. Den Doktoranden Matthias Menzel fasziniert die Tatsache, „dass man durch geschicktes Variieren der Versuchsanordnung die Messergebnisse zu der komplizierten magnetischen Struktur zusammensetzen kann".
Um diese neuartige Spinstruktur und den außergewöhnlichen Symmetriebruch zwischen magnetischer und atomarer Ordnung zu verstehen, mussten die Theoretiker der Universität Kiel und des Forschungszentrums Jülich ein Modell für die Spinanordnung entwickeln und aufwendige quantenmechanische Rechnungen auf Supercomputern in Jülich durchführen. Diese brachten aber schließlich die Gewissheit, dass es sich tatsächlich um stabile magnetische Skyrmionen auf einer Metalloberfläche handelt. Professor Stefan Heinze, Leiter der Kieler Arbeitsgruppe: „Mit Hilfe unseres Modells konnten wir die genaue Spinstruktur im Eisenfilm angeben und als Skyrmionengitter identifizieren. Der Vergleich mit den experimentellen Daten erbrachte schließlich den Beweis für unsere Entdeckung."
Die Ursache für das Auftreten dieser komplexen Struktur ist ein Zusammenspiel verschiedener magnetischer Wechselwirkungen: Während die Rotation von atomaren Spins mit einem bestimmten Drehsinn durch die antisymmetrische Dzyaloshinskii-Moriya-Wechselwirkung verursacht wird, kann erst die sogenannte 4-Spin-Wechselwirkung unter Beteiligung von vier magnetischen Atomen die hier gefundenen Skyrmionen erzeugen.
Für zukünftige Anwendungen, zum Beispiel im Bereich der Spintronik, eröffnen die gefundenen magnetischen Skyrmionen völlig neue Möglichkeiten, werfen gleichzeitig aber auch neue Fragen auf: Wie wirkt elektrischer Strom auf die Skyrmionen und lassen sich die magnetischen Wirbel vielleicht sogar gezielt bewegen?
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.