Molekulare Zerreißprobe
Neue Wege zur Vermessung der Stabilität von Proteinen
Eine innovative Theorie für das Aufbrechen biomolekularer Bindungen eröffnet neue Wege zur Vermessung der Stabilität und Energetik von Proteinen.
Klaus Kroy
So vielfältig wie die Funktionen, die Proteine im Körper übernehmen, sind auch die Krankheitsbilder, die Fehler im molekularen Bauplan nach sich ziehen können, darunter etwa Alzheimer oder die Creutzfeldt-Jakob-Krankheit. Der Bauplan der Proteine bestimmt sich maßgeblich aus mikroskopischen Bindungsenergien, die konventionellen biochemischen Techniken schwer zugänglich sind, sich jedoch aus dem Reißverhalten der Moleküle unter externer Kraft ableiten lassen. Auf dieser Idee basiert die sogenannte dynamische Kraftspektroskopie, eine weit verbreitete Kombination experimenteller und theoretischer Methoden, die alle dem Ziel dienen, einzelne Moleküle kontrolliert zu zerreißen. Ähnlich wie in makroskopischen Bruch- und Crashtests lassen sich dann aus den dazu benötigten Kräften mittels Modellrechnungen Rückschlüsse auf die energetischen Eigenschaften und die Stabilität der Moleküle ziehen.
Die dazu verwendeten experimentellen Werkzeuge, wie etwa Laserfallen oder Rasterkraftmikroskope, erlauben traditionell nur Kraftprotokolle, in denen die Kraft zeitlich vergleichsweise langsam erhöht wird, was auch die mathematische Beschreibung des Reißvorgangs in konventionellen Theorien der Kraftspektroskopie erheblich vereinfacht. Atomistische Computersimulationen dagegen operieren im entgegengesetzten Grenzfall sehr rasanter Kraftsteigerungen, um die erforderliche Rechenzeit in Rahmen des Machbaren zu halten. Dabei werden aber physikalische Effekte relevant, die sich in den zur Datenanalyse bislang verwendeten mathematischen Theorien nicht ausreichend berücksichtigen lassen.
Im Fachblatt "Nature Communications" (Online-Ausgabe) stellen Forscher des Instituts für Theoretische Physik der Universität Leipzig nun eine neue Theorie der dynamischen Kraftspektroskopie vor, die es erstmals erlaubt, langsames und schnelles Aufreißen von Molekülbindungen mit einer einheitlichen analytischen Theorie zu beschreiben. "Damit wird endlich ein direkter Vergleich zwischen Experiment und Computersimulation möglich", sagt Prof. Dr. Klaus Kroy. "Auch für zukünftige Messungen, die mit innovativen experimentellen Techniken zu immer höheren Kraftraten vordringen, wird damit nun eine präzise mathematische Auswertung möglich. Davon darf man sich neue Einblicke in die Funktionsweise von Proteinen, Biopolymeren und anderen Bausteinen des Lebens erhoffen, und damit am Ende auch ein besseres Verständnis der molekularen Ursachen vieler Krankheiten."
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!
Themenwelt Spektroskopie
Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!