Wissenschaftler zeigen: Carben-Moleküle "reiten" auf Gold-Atomen
"Vorhangröllchen-Prinzip" löst scheinbaren Widerspruch
© WWU/Harald Fuchs
Die Wissenschaftler untersuchten Carben-Moleküle auf einer Goldoberfläche. Mithilfe der Rastertunnelmikroskopie konnten die Physiker im münsterschen "Center for NanoTechnology" (CeNTech) erstmals Carbene mit molekularer Auflösung abbilden. Chemiker der Arbeitsgruppe von Prof. Dr. Frank Glorius vom Organisch-Chemischen Institut der WWU hatten die Carbene zuvor hergestellt.
"Überraschend zeigte sich, dass sich die Carben-Moleküle auf der Goldoberfläche von selbst ordneten, was eine hohe Beweglichkeit voraussetzt", berichtet Prof. Dr. Harald Fuchs vom Physikalischen Institut der WWU, wissenschaftlicher Leiter des CeNTech. Für die Forscher war dies eine unerwartete Entdeckung, denn Carbene sind Moleküle, die stabile Filme bilden und so die darunterliegende Metalloberfläche vor äußeren Einflüssen schützen, also beispielsweise Korrosion verhindern. "Wir waren davon ausgegangen, dass diese Moleküle daher fest und unverrückbar an die Goldoberfläche binden. Stattdessen haben wir gesehen, dass sich bestimmte Carbene bewegen und dicht zusammenlagern", erläutert Frank Glorius.
Einerseits fest mit der Oberfläche verbundene Filme, andererseits bewegliche Moleküle – diesen scheinbaren Widerspruch klärte der Forscherverbund durch Untersuchungen mit dem Rastertunnelmikroskop, gezielte chemische Veränderungen an den Carbenen und theoretische Simulationen. Das Team zeigte: Die verwendeten Carbene ("N-heterocyclische Carbene") gehen zwar eine feste chemische Verbindung mit einzelnen Atomen aus der Goldoberfläche ein. Sie lösen diese Gold-Atome aber heraus und gleiten auf ihnen über die Oberfläche. "Durch die Bindungskräfte der Gold-Atome untereinander bleiben die 'Jockey-Carbene' auf der Oberfläche, sind aber auf ihr mobil und lagern sich zu geordneten Filmen zusammen. Das Prinzip ist ähnlich wie bei einer Vorhangschiene: Die Vorhangröllchen können sich zwar entlang der Schiene bewegen, können sich aber nicht von ihr lösen", veranschaulicht Harald Fuchs.
Die Forscher hoffen, dass ihre Entdeckung in Zukunft technisch nutzbar ist. Sie könnte beispielsweise helfen, verbesserte Elektroden zu entwickeln oder chemische Katalysatoren zu optimieren, was für die Industrie wichtig ist. Die Arbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.
Originalveröffentlichung
Gaoqiang Wang, Andreas Rühling, Saeed Amirjalayer, Marek Knor, Johannes Bruno Ernst, Christian Richter, Hong-Jun Gao, Alexander Timmer, Hong-Ying Gao, Nikos L. Doltsinis, Frank Glorius und Harald Fuchs; "Ballbot-type motion of N-heterocyclic carbenes on gold surfaces"; Nature Chemistry Advance Online Publication; 2016
Meistgelesene News
Originalveröffentlichung
Gaoqiang Wang, Andreas Rühling, Saeed Amirjalayer, Marek Knor, Johannes Bruno Ernst, Christian Richter, Hong-Jun Gao, Alexander Timmer, Hong-Ying Gao, Nikos L. Doltsinis, Frank Glorius und Harald Fuchs; "Ballbot-type motion of N-heterocyclic carbenes on gold surfaces"; Nature Chemistry Advance Online Publication; 2016
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.