Tauchgang in einen Magneten

Erstmalige 3-D-Darstellung von internen magnetischen Strukturen

27.07.2017 - Schweiz

Zum ersten Mal haben Forschende die Richtungen der Magnetisierung in einem dreidimensionalen magnetischen Objekt sichtbar gemacht. Die kleinsten Details in ihrer Visualisierung waren dabei zehntausend Mal kleiner als ein Millimeter. In der sichtbar gemachten magnetischen Struktur stach eine Art von Muster besonders hervor: magnetische Singularitäten namens Bloch-Punkte, die bisher nur in der Theorie bekannt waren.

Grafik: Paul Scherrer Institut/Claire Donnelly

Ein virtueller senkrechter Schnitt durch die Probe offenbart ihre innere magnetische Struktur. Die zylinderförmige Probe hat einen Durchmesser von 0,005 Millimetern (5 Mikrometer) und der hier gezeigte Abschnitt ist 0,0036 Millimeter (3,6 Mikrometer) hoch. Die magnetische Struktur wird durch Pfeile veranschaulicht. Die Farbe der Pfeile zeigt zusätzlich an, ob sie auf den Betrachter zu (orange) oder vom Betrachter weg (lila) zeigen.

Grafik: Paul Scherrer Institut/Claire Donnelly

Darstellung eines Bloch-Punktes, den die Wissenschaftler in ihren Daten entdeckten. Ein Bloch-Punkt enthält eine magnetische Singularität, bei der sich die Richtung der Magnetisierung abrupt ändert. Innerhalb des hier gezeigten Bloch-Punktes erfolgt dieser Richtungswechsel von nach oben zeigenden "Magnetnadeln" – dargestellt durch Pfeile – zu nach unten zeigenden. Diese Singularität ist von einem Wirbel der Magnetisierung umgeben, dessen Form derjenigen eines Tornados ähnelt.

Grafik: Paul Scherrer Institut/Claire Donnelly
Grafik: Paul Scherrer Institut/Claire Donnelly

Ein Team von Forschenden des Paul Scherrer Instituts PSI, der ETH Zürich und der Universität Glasgow konnte erstmals die magnetische Struktur innerhalb eines kleinen dreidimensionalen Objekts im Nanometerbereich abbilden. Die magnetische Struktur ist die gemeinsame Anordnung der magnetischen Momente; jedes magnetische Moment kann als eine winzige magnetische Kompassnadel gedacht werden. Das mehrere Mikrometer (Tausendstel eines Millimeters) kleine untersuchte Objekt war ein zylinderförmiger Magnet aus Gadolinium-Kobalt – ein Material, das sich ferromagnetisch verhält. Den Forschenden gelang es im Inneren dieses Objekts die feinen magnetischen Muster bis auf das Zehntausendstel eines Millimeters abzubilden, mit anderen Worten: die kleinsten noch sichtbaren Details in der 3-D-Visualisierung waren rund 100 Nanometer klein. Die Bildgebung wurde mit einer hochmodernen Technik erreicht, der Magnettomografie mittels harter Röntgenstrahlung. Diese neue Technik wurde im Rahmen ebendieser Studie am PSI entwickelt.

„Bislang liessen sich solche winzigen Details der magnetischen Struktur nur in dünnen Filmen oder an den Oberflächen von Objekten abbilden“, erklärt Laura Heyderman, Leiterin der vorliegenden Studie, Forscherin am PSI und Professorin an der ETH Zürich. „Mit unseren jetzigen Bildern dagegen können wir richtiggehend in das magnetische Material eintauchen: Wir sehen und verstehen die dreidimensionale Anordnung der winzigen magnetischen Kompassnadeln.“ Diese kleinen Nadeln reagieren auf einander und sind daher nicht beliebig angeordnet, sondern bilden bestimmte Muster, die das gesamte magnetische Objekt durchziehen.

Grundlegende magnetische Strukturen und erstmals Bloch-Punkte sichtbar gemacht

Die Forschenden erkannten schnell, dass das magnetische Muster aus grundlegenden magnetischen Strukturen besteht, die ineinander verschlungen sind: Sie erkannten magnetische Domänen, also Regionen mit gleicher magnetischer Ausrichtung, und Domänenwände, die zwei solcher Domänen voneinander trennen. Die Forschenden beobachteten zudem magnetische Wirbel, deren Form derjenigen eines Tornados gleicht. Zusammengesetzt bildeten all diese Strukturen ein einzigartiges, vielschichtiges Muster. „Diese grundlegenden, bekannten Strukturen zu sehen, wie sie sich zu einem komplexen dreidimensionalen Netzwerk zusammenfügen, war wirklich schön und eindrucksvoll“, sagt Claire Donnelly, Erstautorin der Studie.

Eine besondere Art Struktur stach dabei heraus und wertete die Forschungsergebnisse zusätzlich auf: ein Paar magnetischer Singularitäten, sogenannte Bloch-Punkte. Bloch-Punkte enthalten einen unendlich kleinen Bereich, in dem die „magnetischen Kompassnadeln“ ihre Richtung schlagartig ändern. Singularitäten verschiedenster Art faszinieren Forschende in allen möglichen Wissenschaftsbereichen; bekannte Beispiele sind die Schwarzen Löcher im Weltall. „Bei den Ferromagneten kann die Magnetisierung üblicherweise als stetig angesehen werden, das heisst, auf der Nanometerskala gibt es keine plötzlichen Änderungen. An diesen Singularitäten dagegen gilt genau das nicht mehr“, sagt Sebastian Gliga von der Universität Glasgow, der derzeit als Gastwissenschaftler am PSI ist. Bloch-Punkte stellen Monopole der Magnetisierung dar und obwohl sie schon vor über 60 Jahren vorhergesagt wurden, konnten sie bis zu dieser Studie nie direkt beobachtet werden.

Röntgen-Magnettomografie: Eine 3-D-Abbildung mit Auflösung auf der Nanometer-Skala

Die in dieser Studie angewandte, experimentelle Technik der Röntgen-Magnettomografie basiert auf einem Grundprinzip der Computertomografie (CT). Ähnlich wie bei medizinischen CT-Scans werden viele Röntgenbilder der Probe nacheinander und jeweils aus leicht unterschiedlicher Richtung aufgenommen. Die Messungen dieser Studie wurden an der cSAXS-Strahllinie der Synchrotron-Lichtquelle Schweiz SLS am PSI durchgeführt. Eine hochmoderne Messeinheit zur Röntgen-Nanotomografie des OMNY-Projekts ermöglichte zusammen mit einer kürzlich entwickelten Bildgebungstechnik namens Ptychografie die Experimente. Aus den so gesammelten Daten erstellten die Forschenden mittels Computerberechnungen und einem am PSI entwickelten neuartigen Rekonstruktionsalgorithmus eine 3-D-Landkarte der Magnetisierung.

Die Forschenden nutzten sogenannte „harte“ Röntgenstrahlen an der SLS des PSI. Im Vergleich zu „weichen“ Röntgenstrahlen haben harte Röntgenstrahlen eine höhere Energie. „Die weiche Röntgenstrahlung mit ihrer niedrigeren Energie wurde schon zuvor sehr erfolgreich eingesetzt, um ähnliche Landkarten der magnetischen Momente zu erzielen“, erklärt Claire Donnelly. „Aber weiche Röntgenstrahlung dringt kaum in solche Proben ein, daher lässt sich mit ihr nur die Magnetisierung eines Dünnfilms oder an der Oberfläche eines Objekts abbilden.“ Um wirklich ins Innere ihres Magneten einzutauchen, wählten die PSI-Forschenden daher harte Röntgenstrahlung. Den Preis der deutlich geringeren Signalstärke, die die harte Röntgenstrahlung mit sich bringt, nahmen sie dabei in Kauf. „Viele Leute haben vorher nicht geglaubt, dass uns diese magnetische 3-D-Bildgebung mit harten Röntgenstrahlen gelingen würde“, erinnert sich Laura Heyderman.

Massgeschneiderte Magnete für die Zukunft

Die Forschenden sehen ihre Leistung als Beitrag zu einem tieferen Verständnis der grundlegenden Eigenschaften magnetischer Materialien. Darüber hinaus könnte die neue Methode der Forschenden, mit der sich ins Innere von Magneten blicken lässt, einen weitreichenden Einfluss auf viele der heutigen Technologien haben: Magnete finden sich in Motoren, in der Energieproduktion und in der Datenspeicherung. Womöglich lassen sich dank der nun vorgestellten Methode eines Tages bessere, massgeschneiderte Magnete erschaffen, was wiederum viele alltägliche Anwendungen weiter verbessern würde.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen