Schnappschüsse an der atomaren Grenze
Stuttgarter Max-Planck-Forscher beobachten erstmals Wechselwirkungen der Atome an der Grenzfläche zwischen einem flüssigem Metall und einem Kristall
Saphir ist ein sehr stabiles Aluminiumoxid (α-Al203, auch: Korund), das invielen technologischen Bereichen eingesetzt wird. In der Halbleitertechnologie beispielsweise isoliert es elektronische Bauteile. In dieser Branche müssen die Herstellungsverfahren in immer kleineren Dimensionen durchgeführt und optimiert werden. Deshalb ist es wichtig zu wissen, welche Verbindungen und Reaktionen an Grenzflächen zwischen festen und flüssigen Stoffen auf atomarer Ebene stattfinden
Das Interesse an einer grundlegenden Erforschung der Struktur und Phänomene an Fest-Flüssig-Grenzflächen hat zugenommen, nachdem bisherige Studien mit Röntgenbeugung und atomistische Computersimulationen gezeigt haben, dass es sehr dicht an der Grenzfläche zu Dichteschwankungen in der flüssigen Phase kommt. Um diese Prozesse mit hoch auflösender Transmissions-Elektronenmikroskopie näher untersuchen zu können, wählten die Wissenschaftler als Versuchssystem flüssiges Aluminium sowie die feste Keramik α-Al203 in einkristalliner Form. Sie brachten dieses Materialsystem an einem Hochspannungs-Elektronenmikroskop mit einer Auflösung von 0,12 Nanometern auf Temperaturen von 850 Grad Celsius, was oberhalb des Schmelzpunktes von Aluminium (660 Grad Celsius) liegt.
Das Stuttgarter Transmissions-Elektronenmikroskop JEM-ARM 1250, JEOL, gehört zu den am höchsten auflösenden Geräten seiner Art weltweit. Mit diesem Mikroskop haben die Max-Planck-Wissenschaftler nun zum ersten Mal im Bild festgehalten, dass die Dichte der Atome in flüssigem Aluminium direkt an der Grenzfläche nicht einheitlich ist. Es stellen sich Dichtefluktuationen ein. Als Folge kleiner Änderungen der Experimentierbedingungen ließen sich außerdem das Wachstum des Saphirs aus flüssigem Aluminium sowie das Eindringen von Sauerstoff-Atomen entlang der Grenzfläche beobachten.
Das Ergebnis der"in situ"-Beobachtung bannten die Forscher auf Videofilm mit 25 Bildern pro Sekunde. Den Wissenschaftlern ist es gelungen, stichhaltige Ergebnisse unbeeinträchtigt durch mögliche Artefakt-Effekte zu erzielen. Die Aufnahmen zeigen, wie sich die Atome des flüssigen Aluminiums an der kristallinen Grenzfläche anordnen. Erkennbar geworden ist, dass sich die Grenzfläche dynamisch entwickelt und der Kristall lagenweise wächst. Die Forscher folgern daraus, dass Kristalle die Anordnung von Atomen in Flüssigkeiten induzieren können - sogar in Metall-Keramik-Systemen unter hohen Temperaturen.
Originalveröffentlichung: S.H. Oh, C. Scheu, M. Rühle, Y. Kauffmann und W.D. Kaplan; "Ordered Liquid Aluminium at the Interface with Sapphire"; Science 2005.
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.