BfR holt bei Experten aktuelle Informationen zu Nanopartikeln in verbraucherrelevanten Einsatzbereichen ein
Beim Einsatz der Nanotechnologie in der Produktherstellung werden den Produkten Stoffe mit einer Partikelgröße zwischen 0,2 und 100 Nanometern zugesetzt. Nanotechnologie wird von vielen schon als Schlüsseltechnologie des 21. Jahrhunderts gehandelt. Doch stellt sich immer mehr auch die Frage, ob der versprochene Nutzen neuer Produkte mit Nanotechnologie nicht auch mit unbekannten Risiken verknüpft sein könnte. Beim Expertengespräch von Wissenschaftlern aus Forschung, Praxis und Industrie im BfR standen die drei Anwendungsschwerpunkte kosmetische Produkte, Lebensmittel und Bedarfsgegenstände zur Debatte. Dabei wurden Fragen zu Stoffeigenschaften, Produktionsschritten, den Trends in verbraucherrelevanten Bereichen und vor allem zu den Risiken der Endprodukte diskutiert.
Der Einsatz von Nanopartikeln in Kosmetika ist vergleichsweise übersichtlich. In Haarpflegemitteln, Hautcremes und Sonnenschutzcremes werden Stoffe in diesem Größenbereich gezielt zugesetzt. Am weitesten verbreitet sind Nanopigmente aus Titandioxid oder Zinkoxid als UV-Filter in Sonnenschutzcremes. Die Pigmente wirken wie winzige mineralische Spiegel, die die UV-Strahlung reflektieren oder absorbieren und so die Haut schützen.
Das Verhalten auf der Haut aufgetragener Nanopartikel ist am Beispiel von Titandioxid und Zinkoxid gut untersucht. Alle auf dem Expertentreffen vorgestellten Ergebnisse zeigen, dass die Nanopartikel nicht in die gesunden Hautzellen eindringen. Hauptsächlich verteilen sie sich auf der Hautoberfläche. In tiefere Hautschichten gelangen sie über die Haarfollikel (Wurzelscheide), wo sie auch einige Zeit verbleiben. Das Haarwachstum befördert die Nanopartikel dann später wieder auf die Hautoberfläche. Ein tieferes Eindringen von Nanopigmenten wurde bei Mikroverletzungen der Haut beobachtet. Bei der Frage zum Risiko kamen die Experten zu dem Schluss, dass es für die Aufnahme über die Haut derzeit keine Hinweise auf eine spezielle "Nanotoxikologie" gibt.
Unübersichtlich hingegen ist der Einsatz von Nanotechnologie im Lebensmittelbereich. Die zentrale Frage lautet: Was könnte über den zusätzlichen Einsatz von Nanoverbindungen bei Lebensmitteln an verbesserten Eigenschaften erreicht werden? Als einen zukunftsträchtigen Anwendungsbereich für Nanotechnologie sehen die Experten die Entwicklung von Novel Foods, in denen neue oder modifizierte Molekülstrukturen genutzt werden. In den USA wurden von der Food and Drug Administration bereits einige Produkte mit Nanopartikeln zugelassen. Von dort sind nach Kenntnis der Experten bisher keine gesundheitlichen Risiken berichtet worden.
Bei einigen Bedarfsgegenständen nutzt man Partikel in Nanogröße aufgrund ihrer physikalischen und chemischen Eigenschaften. Bei Verpackungen macht man sich die Barriere-Eigenschaften gegenüber Sauerstoff, Kohlendioxid und Wasser zunutze oder setzt sie als Lichtschutz und zur Verbesserung von mechanischen und thermischen Eigenschaften ein. So werden bestimmte Nanoverbindungen zum Beispiel im Kunststoff Polyamid eingesetzt. Die Wahrscheinlichkeit, dass diese Partikel auf darin verpackte Lebensmittel übergehen, wird als sehr gering eingeschätzt, da sich diese Schichten an der Außenseite befinden. Andere Verpackungen wiederum werden mit Nanoschichten aus Aluminium oder Siliziumoxid bedampft. Ob aus solchen anorganischen Schichten Partikel freigesetzt werden, ist noch nicht geklärt.
Nanotechnologie wird seit vielen Jahrzehnten bereits in Lacken eingesetzt. Die kleinen Partikel sind dort mechanisch aktiv gebunden. Weitere Anwendungsgebiete sind antimikrobielle Beschichtungen bei Küchengeräten sowie mit Nanopartikeln modifizierte Textilien. Bei Textilien können Nanopartikel sowohl für die Entwicklung schmutzabweisender Oberflächen eingesetzt werden als auch als wirksame Wasserbarriere dienen. Antimikrobiell wirkende Silber-Nanopartikel werden in Schuhsohlen und einigen Bekleidungstextilien verwendet.
Bei der Untersuchung und dem Nachweis von Nanopartikeln wird derzeit der parallele Einsatz mehrerer Analysemethoden empfohlen.
Aus Sicht der Risikobewertung sind viele Fragen offen. Besonders die geeigneten Teststrategien zur Ermittlung gesundheitlicher Risiken stellen eine Herausforderung dar.