Mikrokapseln mögen's heiß und salzig
Max-Planck-Wissenschaftler entwickeln neue Methode, mit der man die Wanddurchlässigkeit von Mikrokapseln mittels Salzgehalt und Temperatur steuern kann
Wichtig für die optimale Einsatzfähigkeit von Mikrokapseln ist es, dass man die Durchlässigkeit der Kapselwand gezielt einstellen kann: Beim Befüllen der Mikrocontainer muss die Wand zunächst für den Wirkstoff durchlässig sein, damit er hineingelangt. Anschließend sollte der Inhalt durch Abdichten der Kapselhülle eingeschlossen werden, um ihn dann am Wirkort durch die Kapselwand wieder abgeben zu können. Die Potsdamer Wissenschaftler haben jetzt herausgefunden, dass man Dichte und Dicke der Kapselwand und damit ihre Durchlässigkeit bereits durch Änderung der Temperatur und des Salzgehaltes kontrollieren kann.
Erhöht man die Temperatur nur leicht, schwellen oder schrumpfen die Hohlkugeln bei gleichzeitiger Verdünnung bzw. Verdickung ihrer Wand. Dies hängt von der Zusammensetzung und elektrischen Ladung der Polymerhülle ab:
- Beim Schrumpfen ist die Einkapselung von sehr kleinen Molekülen möglich: Durch die starke Energiezufuhr beim Erhitzen lösen sich die Bindungen zwischen den entgegengesetzt geladenen Polymermolekülen und in Folge dessen weicht die Kapselwand auf. Das Material der Hülle kann so enger zusammen fließen, die Wand wird dicker und dichter. Die Moleküle können jetzt nicht mehr hindurchwandern und sind im Inneren eingeschlossen.
- Schwellen die Hohlkügelchen, weichen die Polymerwände beim Erhitzen auch auf. Jedoch befinden sich so viele gleichwertige Ladungen in der Kapselwand, dass sie sich dabei gegenseitig abstoßen. Die gesamte Struktur wird so unter Zunahme des Durchmessers und der Wandverdünnung erheblich aufgebläht. Das Ergebnis ist eine deutlich erhöhte Durchlässigkeit im Vergleich zu den Ursprungskapseln bei Raumtemperatur.
Wird jetzt Salz in die Kapsellösung gegeben, neutralisieren sich die elektrischen Ladungen und die Kapseln schrumpfen wieder, wobei sich die Wand verdickt wie in dem zuerst beschriebenen Fall. "Durch die Kombination einfacher Mittel, wie sie in jeder Küche zur Verfügung stehen, können wir die Wandeigenschaften der Mikrotransportsysteme beliebig variieren", sagt Karen Köhler, eine an diesem Projekt beteiligte Wissenschaftlerin des Potsdamer Max-Planck-Instituts für Kolloid- und Grenzflächenforschung. Dabei variiert der Spielraum für Kapseln mit einem ursprünglichen Durchmesser von 4,5 Mikrometern zwischen 1,5 bis zu 20 Mikrometern.
Die Kapselgröße ist jedoch nicht nur im Labor zielgenau einstellbar. Die Wissenschaftler haben die Vorgänge in der Kapselwand auch theoretisch verstanden, so dass sie den Durchmesser der Hohlkugeln unter den jeweiligen Bedingungen ganz ohne Experiment vorhersagen können. Das von ihnen entwickelte Modell beinhaltet den Wettstreit zweier Kräfte, zum einen der Polymer/Wasser-Grenzflächenspannung, die die Kapsel und ihre Oberfläche verkleinern möchte. Auf der anderen Seite die elektrostatische Abstoßungskraft zwischen den gleichnamigen Ladungen in der Polymerhülle, die die Kapsel schwellen lässt. "Je nach Stärke der beiden Kontrahenten lässt sich die Kapselgröße bei einer ganz bestimmten Salzkonzentration und Temperatur genau vorausberechnen", erklärt Maarten Biesheuvel, ebenfalls Mitglied des Forscherteams.
Das theoretische Modell sagt dabei auch voraus, dass es möglich sein sollte, durch geschickte Einstellung der Bedingungen zunächst geschwollene Kapseln wieder zu schrumpfen und umgekehrt. Genau diese Vorhersage konnte auch experimentell bestätigt werden.
Originalveröffentlichung: Karen Köhler, P. Maarten Biesheuvel, Richard Weinkamer, Helmuth Möhwald und Gleb B. Sukhorukov; "Salt-induced swelling-to-shrinking transition in polyelectrolyte multilayer microcapsules"; Physical Review Letters 2006.