Delikate Beziehungen zwischen einzelnen Spins
Wissenschaftler messen die magnetische Wechselwirkung zwischen einzelnen Atomen
Max-Planck-Forscher haben mit Hilfe eines Rastertunnelmikroskops die Wechselwirkungen der Spins zweier benachbarter Kobaltatome auf einer Kupferoberfläche präzise gemessen. Diese Methode eröffnet nun neue Möglichkeiten, die Quantennatur magnetischer Phänomene zu erforschen und die physikalischen Grenzen magnetischer Datenspeicherung auszuloten. Denn sowohl für neue Massenspeicher als auch für die Erforschung der Grenzen herkömmlicher Speichermedien ist ein detailliertes Verständnis der Kopplung und der Dynamik einzelner Spins notwendig. Gleichzeitig vertiefen die Ergebnisse der Wissenschaftler das physikalische Verständnis der grundlegenden Wechselwirkungen zwischen den Spins einzelner magnetischen Atomen auf einer Metalloberfläche. Diese Wechselwirkungen wurden nämlich bereits in den 1950er Jahren theoretisch untersucht und konnten nun erstmals mit Messungen an einzelnen Atomen verglichen werden.
Als Sonde für die magnetischen Wechselwirkungen haben die Forscher ein elektronisches Phänomen, den Kondo-Effekt, genutzt. Der Kondo-Effekt entsteht durch die Wechselwirkung des Spins eines magnetischen Atoms auf einer nichtmagnetischen Festkörperoberfläche mit den Elektronen eben dieser Oberfläche. Indem die Forscher die Veränderung der Kondo-Resonanz als Funktion des Abstands zwischen zwei benachbarten Kobaltatomen auf einer Kupferoberfläche detailliert auswerteten, konnten sie die Wechselwirkung der Spins der beiden Kobaltatome bestimmen. Die Wissenschaftler entdeckten zudem einen neuartigen magnetischen Zustand: Eine lineare Atomkette, in der die Spins dreier Atome wechselwirken und einen korrelierten Mischzustand bilden.
Um die magnetischen Wechselwirkungen zu bestimmen, benutzten die Forscher die Rastertunnelmikroskopie. Um die winzigen magnetischen Effekte messen zu können, mussten die Forscher die Experimente bei tiefen Temperaturen (-267.15 Grad Celsius) in einer vibrationsarmen und schallisolierten Umgebung durchführen. Die Anordnung der Atome wurde präpariert, indem einzelne Moleküle, die die Kobaltatome enthalten, gezielt mit der Spitze des Rastertunnelmikroskops zerstört wurden.
Originalveröffentlichung: P. Wahl, P. Simon, L. Diekhöner, V.S. Stepanyuk, P. Bruno, M.A. Schneider, K. Kern; "Exchange Interaction between Single Magnetic Adatoms"; Physical Review Letters 2007.
Meistgelesene News
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.