Einzelne Lichtquanten auf Knopfdruck
Physiker am Max-Planck-Institut für Quantenoptik machen ein Rubidiumatom zu einem Einzel-Photon-Server
Ein einzelnes Atom kann immer nur ein Photon auf einmal aussenden. Einzelne Photonen können also erzeugt werden, wenn man ein einzelnes Atom mit einem Laserpuls anregt. Wird das Atom zwischen zwei stark reflektierenden Spiegeln, einem sogenannten Resonator, gespeichert, dann fliegen alle Photonen, die das Atom bei wiederholtem Beschuss mit Laserpulsen emittiert, in Richtung der Resonatorachse. Verglichen mit anderen Methoden der Photonenerzeugung liefert dieses Verfahren Lichtquanten sehr einheitlicher Energie. Auch können die Eigenschaften der Photonen gesteuert werden. Man kann sie beispielsweise ununterscheidbar machen - eine Voraussetzung, um sie für Rechnungen in Quantencomputern zu verwenden. Auf der anderen Seite war es bis heute nicht möglich, ein elektrisch neutrales Atom, das einzelne Photonen emittiert, lange genug in einem Resonator festzuhalten, um einen praktisch verwertbaren Photonenstrom zu bekommen.
2005 gelang es einem Wissenschaftlerteam um Prof. Rempe vom Max-Planck-Institut für Quantenoptik, die Speicherzeiten für ein einzelnes Atom mit Hilfe einer Resonator-Kühlung signifikant zu steigern. Nun zeigen die Wissenschaftler, dass sie diese dreidimensionale Kühlung mit der Erzeugung einzelner Photonen so kombinieren können, dass ein einzelnes Atom bis zu 300.000 Photonen abstrahlt. Da die Verweilzeit des Atoms im Resonator sehr viel größer ist als die Zeit, die es braucht, das Atom durch Einfangen und Kühlen bereit zu stellen, können einzelne Photonen fast jederzeit erzeugt werden. Das ermöglicht es, die Photonen an einen Nutzer weiterzuleiten: das System arbeitet als Einzel-Photonen-Server.
In dem Experiment werden zunächst Rubidiumatome innerhalb einer Vakuumkammer auf extrem tiefe Temperaturen gekühlt. Anschließend leiten die Wissenschaftler ultrakalte Atome über eine "Lichtfalle" in den optischen Resonator, und laden sie danach in eine stehende Lichtwelle, worin die Atome festgehalten werden. Zusätzlich beschießt ein Laser die Atome von der Seite mit Lichtpulsen und regt sie damit zum Leuchten an - die Atome emittieren einzelne Photonen.
Nach einer kurzen Zeit befindet sich nur noch ein einzelnes Atom im Resonator, jetzt kann also ein Strom einzelner Photonen erzeugt werden. Zwischen zwei aufeinander folgenden Emissionen wird das Atom immer wieder gekühlt, damit es nicht auf Grund thermischer Bewegung aus dem Resonator herausfliegt. Um zu überprüfen, ob bei jedem Laserpuls nur ein Photon ausgesandt wird, leiten die Forscher den Photonenstrom auf einen Strahlteiler, der die Photonen auf zwei Detektoren lenkt. Ein einzelnes Photon wird in einem der beiden Detektoren detektiert. Würde mehr als ein Photon erzeugt, käme es zu einer Koinzidenz, das heißt beide Detektoren würden gleichzeitig ein Signal melden. Die Abwesenheit solcher Koinzidenzen in dem vorliegenden Experiment beweist, dass bei jedem Laserpuls immer genau ein Photon ausgestrahlt wird.
Mit der nun veröffentlichten Arbeit sind die Max-Planck-Forscher der Quanteninformationsverarbeitung mit Photonen einen großen Schritt näher gekommen. Mit einem funktionierenden Einzel-Photonen-Server lassen sich solche Herausforderungen wie die deterministische Verschränkung von Atom-Photon- und Atom-Atom-Paaren in Angriff nehmen.
Originalveröffentlichung: Markus Hijlkema , Bernhard Weber, Holger P. Specht, Simon C. Webster, Axel Kuhn, Gerhard Rempe; "A Single-Photon Server with Just One Atom"; Nature Physics 2007.
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Analytik und Labortechnik bringt Sie jeden Dienstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.