How bacteria sense the world
Transduction of signals from the environment is an essential process enabling cells to respond to external stimuli. In many organisms this happens via a process known as the two component system (TCS); a stimulus-response mechanism centred on the interaction of a sensor protein – in this case histidine kinase (HD) – and a response regulator (RR).
In a paper to be published in Structure, the team present an X-ray crystal structure analysis to study this interaction within the bacterium Thermotoga maritima - of interest because of its ability to metabolise carbohydrates such as cellulose and xylan that can be converted to hydrogen.
Analyzing the HK/RR interaction site in detail, they show an interdomain β-sheet between the sensor domain and catalytic domain of histidine kinase (HK), providing crucial clues about the enzyme’s folding structure. They also determined that two molecules of histidine kinase form a dimer, which bonds to two response regulator molecules. Overall, the findings reveal that interaction between HK sensor and catalytic domains act as an on/off “switch” in the TCS, triggering phosphorylation in response to environmental stimuli.
Most read news
Organizations
Other news from the department science
These products might interest you
Kjel- / Dist Line by Büchi
Kjel- and Dist Line - steam distillation and Kjeldahl applications
Maximum accuracy and performance for your steam distillation and Kjeldahl applications
AZURA Purifier + LH 2.1 by KNAUER
Preparative Liquid Chromatography - New platform for more throughput
Save time and improve reproducibility during purification
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.