3D tomographic imagery reveals how lithium batteries age
M. Osenberg / I. Manke / HZB
Whether electric mobility, robotics, or IT - lithium batteries are simply used everywhere. Despite decades of improvements, it has not yet been possible to prevent such batteries from "ageing". Amp-hour capacity is lost with every charge cycle. The processes that lead to this are roughly understood. Now an international team headed by HZB researcher Dr. Ingo Manke has been able to observe with microscopic precision exactly what happens inside the battery at the interfaces between the electrodes during migration of the lithium ions.
3D insights into lithium cells
Manke is an expert in 3D synchrotron tomography, a method that utilises particularly intense X-rays. 3D images can be created of the interior of samples using this non-destructive imaging method with particularly high precision that is available on the BAM beamline at BESSY II. His team investigated a number of different lithium cells during charging and discharging under different cycle conditions. All cells studied had one side of the electrode made of pure lithium, while the other side was constructed of a selection of different electrode materials. Part of the investigation also took place at the Helmholtz-Zentrum Geesthacht.
Formation of microstructures
The tomographic imagery shows how a layer forms between the separator layer and the lithium electrode characterised by microscopic features after only a few charge/discharge cycles. The microscopic features of this layer consist of reaction compounds that form in the electrolyte and can take different forms – from a rather disordered slurry, to moss-like structures, to needle-shaped dendrites that can even cause dangerous short circuits in the battery.
“This gives us for the first time a complete picture of the degradation mechanism in lithium electrodes”, says Manke. It is not only of interest for fundamental understanding of the aging processes in batteries, but also provides valuable directions in the design of more durable batteries.
Original publication
Fu Sun, Xin He, Xiaoyu Jiang, Markus Osenberg, Jie Li, Dong Zhou, Kang Dong, André Hilger, Xiaoming Zhu, Rui Gao, Xiangfeng Liu, Kai Huang, De Ning, Henning Markötter, Li Zhang, Fabian Wilde, Yuliang Cao, Martin Winter, Ingo Manke; "Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography"; Materials Today; 2018
Most read news
Original publication
Fu Sun, Xin He, Xiaoyu Jiang, Markus Osenberg, Jie Li, Dong Zhou, Kang Dong, André Hilger, Xiaoming Zhu, Rui Gao, Xiangfeng Liu, Kai Huang, De Ning, Henning Markötter, Li Zhang, Fabian Wilde, Yuliang Cao, Martin Winter, Ingo Manke; "Advancing knowledge of electrochemically generated lithium microstructure and performance decay of lithium ion battery by synchrotron X-ray tomography"; Materials Today; 2018
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.