Seeing moire in graphene
NIST
In digital photography, moiré (pronounced mwar-ray) patterns occur because of errors in the rendering process, which causes grid patterns to look wavy or distorted. Materials scientists have been using microscopic moiré patterns to detect stresses such as wrinkles or bulges in a variety of materials.
Researchers created graphene on the surface of a silicon carbide substrate at the Georgia Institute of Technology by heating one side so that only carbon, in the form of multilayer sheets of graphene, was left. Using a custom-built scanning tunneling microscope at NIST, the researchers were able to peer through the topmost layers of graphene to the layers beneath. This process, which the group dubbed "atomic moiré interferometry," enabled them to image the patterns created by the stacked graphene layers, which in turn allowed the group to model how the hexagonal lattices of the individual graphene layers were stacked in relation to one another.
Unlike other materials that tend to stretch out when they cool, graphene bunches up like a wrinkled bed sheet. The researchers were able to map these stress fields by comparing the relative distortion of the hexagons of carbon atoms that comprise the individual graphene layers. Their technique is so sensitive that it is able to detect strains in the graphene layers causing as little as a 0.1 percent change in atom spacing.
Original publication: D. Miller, K. Kubista, G. Rutter, M. Ruan, W. de Heer, P. First and J. Stroscio; "Structural analysis of multilayer graphene via atomic moiré interferometry"; Physical Review B. 81. 125427. Published March 24, 2010
Most read news
Topics
Organizations
Other news from the department science
Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.