New Insights into the Interaction of Topological Insulators
Forschungszentrum Jülich / Sebastian Droege
Topological insulators became known beyond expert circles thanks to the 2016 Nobel Prize in Physics. However, their research is still quite in its beginnings, and many fundamental questions remain unanswered. One of the distinguishing features of the compound WTe2 is that it exhibits a whole range of exotic physical phenomena depending on its layer thickness. Atomically thin layers are insulating on the surface, but due to their crystal structure they exhibit so-called topologically protected edge channels. These edge channels are electrically conductive and the conduction depends on the spin of the electrons. If two such layers are stacked on top of each other, crucially different interactions occur depending on how the layers are aligned.
If the two layers are not aligned, the conductive edge channels in the two layers interact only minimally. However, if they are twisted by exactly 180°, the topological protection as well as the edge channels disappear and the entire system becomes insulating. Furthermore, with a minimal twist of only a few degrees, a periodic superstructure, a so-called moiré lattice, forms, which additionally modulates the electrical conductivity. Researchers at the Peter Grünberg Institute (PGI-3) have now been able to study these properties locally on the atomic scale for the first time using a scanning tunneling microscope giving crucial insights into the interactions between the layers.
Original publication
Other news from the department science
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.